BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 202265)

  • 1. The phosphorylation potential generated by respiring bovine heart submitochondrial particles.
    Ferguson SJ; Sorgato MC
    Biochem J; 1977 Nov; 168(2):299-303. PubMed ID: 202265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of oxidative phosphorylation in bovine heart submitochondrial particles.
    Thayer WS; Tu YS; Hinkle PC
    J Biol Chem; 1977 Dec; 252(23):8455-8. PubMed ID: 200612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC; Ferguson SJ; Kell DB; John P
    Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL; Thayer WS
    J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5.
    de Jonge PC; Westerhoff HV
    Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clarification of factors influencing the nature and magnitude of the protonmotive force in bovine heart submitochondrial particles.
    Branca D; Ferguson SJ; Sorgato MC
    Eur J Biochem; 1981 May; 116(2):341-6. PubMed ID: 7250131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable proton conductance of submitochondrial particles.
    Sorgato MC; Ferguson SJ
    Biochemistry; 1979 Dec; 18(25):5737-42. PubMed ID: 42433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system.
    de Meis L; Grieco MA; Galina A
    FEBS Lett; 1992 Aug; 308(2):197-201. PubMed ID: 1499730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?].
    Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV
    Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase.
    Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M
    Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles.
    Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD
    Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol.
    Takayanagi R; Takeshige K; Minakami S
    Biochem J; 1980 Dec; 192(3):853-60. PubMed ID: 7236242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines?
    Krueger MJ; Tan AK; Ackrell BA; Singer TP
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The action of tributyltin on energy coupling in coupling-factor-deficient submitochondrial particles.
    Dawson AP; Selwyn MJ
    Biochem J; 1975 Nov; 152(2):333-9. PubMed ID: 4063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles.
    Moore AL; Bonner WD
    Biochim Biophys Acta; 1981 Jan; 634(1):117-28. PubMed ID: 7470495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of the potential-sensitive molecular probe merocyanine 540 with phosphorylating beef heart submitochondrial particles under equilibrium and time-resolved conditions.
    Smith JC; Graves JM; Williamson M
    Arch Biochem Biophys; 1984 Jun; 231(2):430-53. PubMed ID: 6732242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous synthesis and hydrolysis of ATP regulated by the inhibitor protein in submitochondrial particles.
    Beltrán C; Tuena de Gómez-Puyou M; Darszon A; Gómez-Puyou A
    Eur J Biochem; 1986 Oct; 160(1):163-8. PubMed ID: 3021449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Kell DB; John P; Ferguson SJ
    Biochem J; 1978 Jul; 174(1):257-66. PubMed ID: 212022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of rapid freezing on the functional state of rat heart mitochondria].
    Mishneva LG; Belous AM
    Ukr Biokhim Zh (1978); 1983; 55(2):209-13. PubMed ID: 6221460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.