These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20226713)

  • 1. Comparison between kinematic and ground reaction force techniques for determining gait events during treadmill walking at different walking speeds.
    Kiss RM
    Med Eng Phys; 2010 Jul; 32(6):662-7. PubMed ID: 20226713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two simple methods for determining gait events during treadmill and overground walking using kinematic data.
    Zeni JA; Richards JG; Higginson JS
    Gait Posture; 2008 May; 27(4):710-4. PubMed ID: 17723303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of kinematic-based gait event detection methods in a self-paced treadmill application.
    Hendershot BD; Mahon CE; Pruziner AL
    J Biomech; 2016 Dec; 49(16):4146-4149. PubMed ID: 27825601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of three kinematic gait event detection methods during overground and treadmill walking for individuals post stroke.
    French MA; Koller C; Arch ES
    J Biomech; 2020 Jan; 99():109481. PubMed ID: 31718818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects.
    Riley PO; Paolini G; Della Croce U; Paylo KW; Kerrigan DC
    Gait Posture; 2007 Jun; 26(1):17-24. PubMed ID: 16905322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system.
    Item-Glatthorn JF; Casartelli NC; Maffiuletti NA
    Gait Posture; 2016 Feb; 44():259-64. PubMed ID: 27004668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic identification of gait events during walking on uneven surfaces.
    Eckardt N; Kibele A
    Gait Posture; 2017 Feb; 52():83-86. PubMed ID: 27888695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel kinematic detection of foot-strike and toe-off events during noninstrumented treadmill running to estimate contact time.
    Patoz A; Lussiana T; Gindre C; Malatesta D
    J Biomech; 2021 Nov; 128():110737. PubMed ID: 34517256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking.
    Jung Y; Jung M; Lee K; Koo S
    J Biomech; 2014 Aug; 47(11):2693-9. PubMed ID: 24917473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agreement between footswitch and ground reaction force techniques for identifying gait events: inter-session repeatability and the effect of walking speed.
    Mills PM; Barrett RS; Morrison S
    Gait Posture; 2007 Jul; 26(2):323-6. PubMed ID: 17079145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple, reliable method to determine the mean gait speed using heel markers on a treadmill.
    Souza GSSE; Rodrigues FB; Andrade AO; Vieira MF
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):901-904. PubMed ID: 28347171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithm to decompose ground reaction forces and moments from a single force platform in walking gait.
    Villeger D; Costes A; Watier B; Moretto P
    Med Eng Phys; 2014 Nov; 36(11):1530-5. PubMed ID: 25239287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using horizontal heel displacement to identify heel strike instants in normal gait.
    Banks JJ; Chang WR; Xu X; Chang CC
    Gait Posture; 2015 Jun; 42(1):101-3. PubMed ID: 25907129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait analysis on split-belt force treadmills: validation of an instrument.
    Tesio L; Rota V
    Am J Phys Med Rehabil; 2008 Jul; 87(7):515-26. PubMed ID: 18388556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of toe-off event time during treadmill locomotion using kinematic data.
    De Witt JK
    J Biomech; 2010 Nov; 43(15):3067-9. PubMed ID: 20801452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke.
    Brouwer B; Parvataneni K; Olney SJ
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):729-34. PubMed ID: 19664866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Five Kinematic-Based Identification Methods of Foot Contact Events During Treadmill Walking and Running at Different Speeds.
    Alvim F; Cerqueira L; Netto AD; Leite G; Muniz A
    J Appl Biomech; 2015 Oct; 31(5):383-8. PubMed ID: 25950421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking.
    Ryu HX; Park S
    J Biomech; 2018 Apr; 71():135-143. PubMed ID: 29525240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pain distribution on gait characteristics in patients with low back pain: part 1: vertical ground reaction force.
    Lee CE; Simmonds MJ; Etnyre BR; Morris GS
    Spine (Phila Pa 1976); 2007 May; 32(12):1329-36. PubMed ID: 17515822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of an accelerometer-based method for quantifying gait events.
    Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O
    Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.