These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20226713)

  • 21. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture.
    Karatsidis A; Bellusci G; Schepers HM; de Zee M; Andersen MS; Veltink PH
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agreement of Gait Events Detection during Treadmill Backward Walking by Kinematic Data and Inertial Motion Units.
    Gottlieb U; Balasukumaran T; Hoffman JR; Springer S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
    Silverman AK; Fey NP; Portillo A; Walden JG; Bosker G; Neptune RR
    Gait Posture; 2008 Nov; 28(4):602-9. PubMed ID: 18514526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Gait Speeds on Contact Forces of Lower Limbs.
    Wang X; Ma Y; Hou BY; Lam WK
    J Healthc Eng; 2017; 2017():6375976. PubMed ID: 29065630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of walking speed on kinetic and kinematic parameters in patients with osteoarthritis of the hip using a force-instrumented treadmill and standardised gait speeds.
    Möckel G; Perka C; Labs K; Duda G
    Arch Orthop Trauma Surg; 2003 Jul; 123(6):278-82. PubMed ID: 12748870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment and validation of a simple automated method for the detection of gait events and intervals.
    Ghoussayni S; Stevens C; Durham S; Ewins D
    Gait Posture; 2004 Dec; 20(3):266-72. PubMed ID: 15531173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ground reaction force patterns in stroke patients with various degrees of motor recovery determined by plantar dynamic analysis.
    Chen CY; Hong PW; Chen CL; Chou SW; Wu CY; Cheng PT; Tang FT; Chen HC
    Chang Gung Med J; 2007; 30(1):62-72. PubMed ID: 17477031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Three Motion Capture-Based Algorithms for Spatiotemporal Gait Characteristics: How Do Algorithms Affect Accuracy and Precision of Clinical Outcomes?
    Caron-Laramée A; Walha R; Boissy P; Gaudreault N; Zelovic N; Lebel K
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time kinematic-based detection of foot-strike during walking.
    Karakasis C; Artemiadis P
    J Biomech; 2021 Dec; 129():110849. PubMed ID: 34800744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discriminating features of ground reaction forces in overweight old and young adults during walking using functional principal component analysis.
    Kim HK; Dai X; Lu SH; Lu TW; Chou LS
    Gait Posture; 2022 May; 94():166-172. PubMed ID: 35339964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inertial Sensor Location for Ground Reaction Force and Gait Event Detection Using Reservoir Computing in Gait.
    Havashinezhadian S; Chiasson-Poirier L; Sylvestre J; Turcot K
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does Nordic Walking technique influence the ground reaction forces?
    Encarnación-Martínez A; Catalá-Vilaplana I; Aparicio I; Sanchis-Sanchis R; Priego-Quesada JI; Jimenez-Perez I; Pérez-Soriano P
    Gait Posture; 2023 Mar; 101():35-40. PubMed ID: 36709635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.
    Kim M; Lee D
    Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of ground reaction force and marker-based methods to estimate mediolateral center of mass displacement and margins of stability during walking.
    Buurke TJW; van de Venis L; den Otter R; Nonnekes J; Keijsers N
    J Biomech; 2023 Jan; 146():111415. PubMed ID: 36542905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Instantaneous treadmill speed determination using subject's kinematic data.
    Fusco N; Crétual A
    Gait Posture; 2008 Nov; 28(4):663-7. PubMed ID: 18571925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gait event detection using a thigh-worn accelerometer.
    Gurchiek RD; Garabed CP; McGinnis RS
    Gait Posture; 2020 Jul; 80():214-216. PubMed ID: 32535399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unilateral symptomatic Achilles tendinopathy has limited effects on bilateral lower limb ground reaction force asymmetries and muscular synergy attributes when walking at natural and fast speeds.
    Lalumiere M; Bourbonnais D; Goyette M; Perrino S; Desmeules F; Gagnon DH
    J Foot Ankle Res; 2022 Sep; 15(1):66. PubMed ID: 36071465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.