These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 20226803)
1. A practical Delta 1-dehydrogenation of Delta 4-3-keto-steroids with DDQ in the presence of TBDMSCl at room temperature. Chen K; Liu C; Deng L; Xu G Steroids; 2010 Jul; 75(7):513-6. PubMed ID: 20226803 [TBL] [Abstract][Full Text] [Related]
2. Effective and mild method for converting 3β-hydroxysteroids to 3-keto steroids via DDQ/TEMPO. Zhang W; Pan D; Wu A; Shen L Steroids; 2015 Apr; 96():16-20. PubMed ID: 25617739 [TBL] [Abstract][Full Text] [Related]
3. Replacement of Stoichiometric DDQ with a Low Potential o-Quinone Catalyst Enabling Aerobic Dehydrogenation of Tertiary Indolines in Pharmaceutical Intermediates. Li B; Wendlandt AE; Stahl SS Org Lett; 2019 Feb; 21(4):1176-1181. PubMed ID: 30702297 [TBL] [Abstract][Full Text] [Related]
4. Organocatalytic oxidative dehydrogenation of dihydroarenes by dioxygen using 2,3-dichloro-5,6-dicyano-benzoquinone (DDQ) and NaNO2. Zhang W; Ma H; Zhou L; Sun Z; Du Z; Miao H; Xu J Molecules; 2008 Dec; 13(12):3236-45. PubMed ID: 19104488 [TBL] [Abstract][Full Text] [Related]
5. Quinone-related hexacyclic by-products in the production process of exemestane. Giovenzana GB; Masciocchi N; Negri R; Palmisano G; Penoni A; Toma L Steroids; 2017 Apr; 120():26-31. PubMed ID: 28167101 [TBL] [Abstract][Full Text] [Related]
6. DDQ-promoted direct transformation of benzyl hydrocarbons to amides via tandem reaction of the CDC reaction and Beckmann rearrangement. Qiu J; Zhang R Org Biomol Chem; 2013 Sep; 11(36):6008-12. PubMed ID: 23933799 [TBL] [Abstract][Full Text] [Related]
7. Recoverable organorhodium-functionalized polyhedral oligomeric silsesquioxane: a bifunctional heterogeneous catalyst for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium. Tang S; Jin R; Zhang H; Yao H; Zhuang J; Liu G; Li H Chem Commun (Camb); 2012 Jun; 48(50):6286-8. PubMed ID: 22590711 [TBL] [Abstract][Full Text] [Related]
8. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions. Zhang G; Vasudevan KV; Scott BL; Hanson SK J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752 [TBL] [Abstract][Full Text] [Related]
9. DDQ-induced dehydrogenation of heterocycles for C-C double bond formation: synthesis of 2-thiazoles and 2-oxazoles. Li X; Li C; Yin B; Li C; Liu P; Li J; Shi Z Chem Asian J; 2013 Jul; 8(7):1408-11. PubMed ID: 23625512 [TBL] [Abstract][Full Text] [Related]
10. A highly efficient and practical method for catalytic asymmetric vinylogous Mannich (AVM) reactions. Carswell EL; Snapper ML; Hoveyda AH Angew Chem Int Ed Engl; 2006 Nov; 45(43):7230-3. PubMed ID: 17042037 [No Abstract] [Full Text] [Related]
11. Palladium-catalyzed Kumada coupling reaction of bromoporphyrins with silylmethyl Grignard reagents: preparation of silylmethyl-substituted porphyrins as a multipurpose synthon for fabrication of porphyrin systems. Sugita N; Hayashi S; Hino F; Takanami T J Org Chem; 2012 Dec; 77(23):10488-97. PubMed ID: 23167823 [TBL] [Abstract][Full Text] [Related]
12. Alumina supported potassium permanganate: an efficient reagent for chemoselective dehydrogenation of 2-imidazolines under mild conditions. Abdollahi-Alibeik M; Mohammadpoor-Baltork I; Zolfigol MA Bioorg Med Chem Lett; 2004 Dec; 14(24):6079-82. PubMed ID: 15546734 [TBL] [Abstract][Full Text] [Related]
13. DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism. Ding Y; Huang Z; Yin J; Lai Y; Zhang S; Zhang Z; Fang L; Peng S; Zhang Y Chem Commun (Camb); 2011 Sep; 47(33):9495-7. PubMed ID: 21766102 [TBL] [Abstract][Full Text] [Related]
14. Intermolecular interactions and dynamics of room temperature ionic liquids that have silyl- and siloxy-substituted imidazolium cations. Shirota H; Wishart JF; Castner EW J Phys Chem B; 2007 May; 111(18):4819-29. PubMed ID: 17417895 [TBL] [Abstract][Full Text] [Related]
15. Palladium nanoclusters supported on propylurea-modified siliceous mesocellular foam for coupling and hydrogenation reactions. Erathodiyil N; Ooi S; Seayad AM; Han Y; Lee SS; Ying JY Chemistry; 2008; 14(10):3118-25. PubMed ID: 18260070 [TBL] [Abstract][Full Text] [Related]
16. Total synthesis of herbimycin A. Carter KD; Panek JS Org Lett; 2004 Jan; 6(1):55-7. PubMed ID: 14703349 [TBL] [Abstract][Full Text] [Related]
17. Diastereoselective construction of syn-1,3-dioxanes via a bismuth-mediated two-component hemiacetal/oxa-conjugate addition reaction. Evans PA; Grisin A; Lawler MJ J Am Chem Soc; 2012 Feb; 134(6):2856-9. PubMed ID: 22296255 [TBL] [Abstract][Full Text] [Related]
18. A silver-catalyzed spirocyclization of alkynyl silyl enol ethers. Schäfer C; Miesch M; Miesch L Chemistry; 2012 Jun; 18(26):8028-31. PubMed ID: 22674788 [TBL] [Abstract][Full Text] [Related]
19. Rational design of original materials for the electrocatalytic hydrogenation reactions: concept, preparation, characterization, and theoretical analysis. St-Pierre G; Chagnes A; Bouchard NA; Harvey PD; Brossard L; Ménard H Langmuir; 2004 Jul; 20(15):6365-73. PubMed ID: 15248724 [TBL] [Abstract][Full Text] [Related]
20. Catalytic dehydrogenative borylation of terminal alkynes by a SiNN pincer complex of iridium. Lee CI; Zhou J; Ozerov OV J Am Chem Soc; 2013 Mar; 135(9):3560-6. PubMed ID: 23374079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]