BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20226806)

  • 1. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect.
    Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin.
    Alhusainy W; Paini A; van den Berg JH; Punt A; Scholz G; Schilter B; van Bladeren PJ; Taylor S; Adams TB; Rietjens IM
    Mol Nutr Food Res; 2013 Nov; 57(11):1969-78. PubMed ID: 23894034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix modulation of the bioactivation of estragole by constituents of different alkenylbenzene-containing herbs and spices and physiologically based biokinetic modeling of possible in vivo effects.
    Alhusainy W; van den Berg SJ; Paini A; Campana A; Asselman M; Spenkelink A; Punt A; Scholz G; Schilter B; Adams TB; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2012 Sep; 129(1):174-87. PubMed ID: 22649189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of methyleugenol bioactivation by the herb-based constituent nevadensin and prediction of possible in vivo consequences using physiologically based kinetic modeling.
    Al-Subeihi AA; Alhusainy W; Paini A; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM
    Food Chem Toxicol; 2013 Sep; 59():564-71. PubMed ID: 23831728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes.
    Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physiologically based biokinetic (PBBK) model for estragole bioactivation and detoxification in rat.
    Punt A; Freidig AP; Delatour T; Scholz G; Boersma MG; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):248-59. PubMed ID: 18539307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix-derived combination effect and risk assessment for estragole from basil-containing plant food supplements (PFS).
    van den Berg SJ; Klaus V; Alhusainy W; Rietjens IM
    Food Chem Toxicol; 2013 Dec; 62():32-40. PubMed ID: 23959103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats.
    Punt A; Paini A; Boersma MG; Freidig AP; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2009 Aug; 110(2):255-69. PubMed ID: 19447879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basil extract inhibits the sulfotransferase mediated formation of DNA adducts of the procarcinogen 1'-hydroxyestragole by rat and human liver S9 homogenates and in HepG2 human hepatoma cells.
    Jeurissen SM; Punt A; Delatour T; Rietjens IM
    Food Chem Toxicol; 2008 Jun; 46(6):2296-302. PubMed ID: 18433972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of human interindividual variation in bioactivation of estragole using physiologically based biokinetic modeling.
    Punt A; Jeurissen SM; Boersma MG; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2010 Feb; 113(2):337-48. PubMed ID: 19920071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling.
    Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM
    Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The natural basil flavonoid nevadensin protects against a methyleugenol-induced marker of hepatocarcinogenicity in male F344 rat.
    Alhusainy W; Williams GM; Jeffrey AM; Iatropoulos MJ; Taylor S; Adams TB; Rietjens IM
    Food Chem Toxicol; 2014 Dec; 74():28-34. PubMed ID: 25218219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats.
    Martati E; Boersma MG; Spenkelink A; Khadka DB; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2011 Jun; 24(6):818-34. PubMed ID: 21446753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico methods for physiologically based biokinetic models describing bioactivation and detoxification of coumarin and estragole: implications for risk assessment.
    Rietjens IM; Punt A; Schilter B; Scholz G; Delatour T; van Bladeren PJ
    Mol Nutr Food Res; 2010 Feb; 54(2):195-207. PubMed ID: 19943261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem mass spectrometry analysis of N2-(trans-Isoestragol-3'-yl)-2'-deoxyguanosine as a strategy to study species differences in sulfotransferase conversion of the proximate carcinogen 1'-hydroxyestragole.
    Punt A; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2007 Jul; 20(7):991-8. PubMed ID: 17590023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progenitor-derived hepatocyte-like (B-13/H) cells metabolise 1'-hydroxyestragole to a genotoxic species via a SULT2B1-dependent mechanism.
    Probert PM; Palmer JM; Alhusainy W; Amer AO; Rietjens IM; White SA; Jones DE; Wright MC
    Toxicol Lett; 2016 Jan; 243():98-110. PubMed ID: 26739637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.
    Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunochemical identification of hepatic protein adducts derived from estragole.
    Wakazono H; Gardner I; Eliasson E; Coughtrie MW; Kenna JG; Caldwell J
    Chem Res Toxicol; 1998 Aug; 11(8):863-72. PubMed ID: 9705747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on inter-ethnic human differences in bioactivation and detoxification of estragole using physiologically based kinetic modeling.
    Ning J; Louisse J; Spenkelink B; Wesseling S; Rietjens IMCM
    Arch Toxicol; 2017 Sep; 91(9):3093-3108. PubMed ID: 28357488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes.
    Jeurissen SM; Punt A; Boersma MG; Bogaards JJ; Fiamegos YC; Schilter B; van Bladeren PJ; Cnubben NH; Rietjens IM
    Chem Res Toxicol; 2007 May; 20(5):798-806. PubMed ID: 17407329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.