BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1026 related articles for article (PubMed ID: 20227372)

  • 21. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities.
    Torres JZ; Schnakenberg SL; Zakian VA
    Mol Cell Biol; 2004 Apr; 24(8):3198-212. PubMed ID: 15060144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Rad51-independent pathway promotes single-strand template repair in gene editing.
    Gallagher DN; Pham N; Tsai AM; Janto NV; Choi J; Ira G; Haber JE
    PLoS Genet; 2020 Oct; 16(10):e1008689. PubMed ID: 33057349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of mutations in SGS1 and in genes functionally related to SGS1 on inverted repeat-stimulated spontaneous unequal sister-chromatid exchange in yeast.
    Nag DK; Cavallo SJ
    BMC Mol Biol; 2007 Dec; 8():120. PubMed ID: 18166135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.
    Sasaki M; Kobayashi T
    Mol Cell; 2017 May; 66(4):533-545.e5. PubMed ID: 28525744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rem mutations in the ATP-binding groove of the Rad3/XPD helicase lead to Xeroderma pigmentosum-Cockayne syndrome-like phenotypes.
    Herrera-Moyano E; Moriel-Carretero M; Montelone BA; Aguilera A
    PLoS Genet; 2014 Dec; 10(12):e1004859. PubMed ID: 25500814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange.
    Lambert S; Mizuno K; Blaisonneau J; Martineau S; Chanet R; Fréon K; Murray JM; Carr AM; Baldacci G
    Mol Cell; 2010 Aug; 39(3):346-59. PubMed ID: 20705238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae.
    Lettier G; Feng Q; de Mayolo AA; Erdeniz N; Reid RJ; Lisby M; Mortensen UH; Rothstein R
    PLoS Genet; 2006 Nov; 2(11):e194. PubMed ID: 17096599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contributions of nucleotide excision repair, DNA polymerase eta, and homologous recombination to replication of UV-irradiated herpes simplex virus type 1.
    Muylaert I; Elias P
    J Biol Chem; 2010 Apr; 285(18):13761-8. PubMed ID: 20215648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Further characterization of the role of Pso2 in the repair of DNA interstrand cross-link-associated double-strand breaks in Saccharomyces cerevisiae.
    Dudás A; Vlasáková D; Dudásová Z; Gabcová D; Brozmanová J; Chovanec M
    Neoplasma; 2007; 54(3):189-94. PubMed ID: 17447848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RAD50 is required for efficient initiation of resection and recombinational repair at random, gamma-induced double-strand break ends.
    Westmoreland J; Ma W; Yan Y; Van Hulle K; Malkova A; Resnick MA
    PLoS Genet; 2009 Sep; 5(9):e1000656. PubMed ID: 19763170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease.
    Ma W; Westmoreland JW; Gordenin DA; Resnick MA
    PLoS Genet; 2011 Apr; 7(4):e1002059. PubMed ID: 21552545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coincident resection at both ends of random, γ-induced double-strand breaks requires MRX (MRN), Sae2 (Ctp1), and Mre11-nuclease.
    Westmoreland JW; Resnick MA
    PLoS Genet; 2013 Mar; 9(3):e1003420. PubMed ID: 23555316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.
    Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V
    Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase.
    Seong C; Colavito S; Kwon Y; Sung P; Krejci L
    J Biol Chem; 2009 Sep; 284(36):24363-71. PubMed ID: 19605344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication.
    Ruiz JF; Gómez-González B; Aguilera A
    Mol Cell Biol; 2009 Oct; 29(20):5441-54. PubMed ID: 19651902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rad52 promotes postinvasion steps of meiotic double-strand-break repair.
    Lao JP; Oh SD; Shinohara M; Shinohara A; Hunter N
    Mol Cell; 2008 Feb; 29(4):517-24. PubMed ID: 18313389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops.
    Chappidi N; Nascakova Z; Boleslavska B; Zellweger R; Isik E; Andrs M; Menon S; Dobrovolna J; Balbo Pogliano C; Matos J; Porro A; Lopes M; Janscak P
    Mol Cell; 2020 Feb; 77(3):528-541.e8. PubMed ID: 31759821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase-Pol ε Interaction.
    Denkiewicz-Kruk M; Jedrychowska M; Endo S; Araki H; Jonczyk P; Dmowski M; Fijalkowska IJ
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct roles of Mus81, Yen1, Slx1-Slx4, and Rad1 nucleases in the repair of replication-born double-strand breaks by sister chromatid exchange.
    Muñoz-Galván S; Tous C; Blanco MG; Schwartz EK; Ehmsen KT; West SC; Heyer WD; Aguilera A
    Mol Cell Biol; 2012 May; 32(9):1592-603. PubMed ID: 22354996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 52.