BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20228154)

  • 1. Study of plastid genome stability in tobacco reveals that the loss of marker genes is more likely by gene conversion than by recombination between 34-bp loxP repeats.
    Tungsuchat-Huang T; Sinagawa-García SR; Paredes-López O; Maliga P
    Plant Physiol; 2010 May; 153(1):252-9. PubMed ID: 20228154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastid marker gene excision by the phiC31 phage site-specific recombinase.
    Kittiwongwattana C; Lutz K; Clark M; Maliga P
    Plant Mol Biol; 2007 May; 64(1-2):137-43. PubMed ID: 17294253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual marker and Agrobacterium-delivered recombinase enable the manipulation of the plastid genome in greenhouse-grown tobacco plants.
    Tungsuchat-Huang T; Maliga P
    Plant J; 2012 May; 70(4):717-25. PubMed ID: 22268515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastid marker gene excision in greenhouse-grown tobacco by agrobacterium-delivered Cre recombinase.
    Tungsuchat-Huang T; Maliga P
    Methods Mol Biol; 2014; 1132():205-20. PubMed ID: 24599855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastid Marker Gene Excision in the Tobacco Shoot Apex by Agrobacterium-Delivered Cre Recombinase.
    Tungsuchat-Huang T; Maliga P
    Methods Mol Biol; 2021; 2317():177-193. PubMed ID: 34028769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process.
    Lutz KA; Maliga P
    Plant J; 2008 Dec; 56(6):975-83. PubMed ID: 18702667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise excision of plastid DNA by the large serine recombinase Bxb1.
    Shao M; Kumar S; Thomson JG
    Plant Biotechnol J; 2014 Apr; 12(3):322-9. PubMed ID: 24261912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of functional lox sites in the plastid genome.
    Corneille S; Lutz KA; Azhagiri AK; Maliga P
    Plant J; 2003 Sep; 35(6):753-62. PubMed ID: 12969428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system.
    Lutz KA; Svab Z; Maliga P
    Nat Protoc; 2006; 1(2):900-10. PubMed ID: 17406323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics.
    Maliga P; Svab Z
    Methods Mol Biol; 2011; 701():37-50. PubMed ID: 21181523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastid marker-gene excision by transiently expressed CRE recombinase.
    Lutz KA; Bosacchi MH; Maliga P
    Plant J; 2006 Feb; 45(3):447-56. PubMed ID: 16412089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation.
    Kode V; Mudd EA; Iamtham S; Day A
    Plant J; 2006 Jun; 46(5):901-9. PubMed ID: 16709203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to plastid transformation utilizes the phiC31 phage integrase.
    Lutz KA; Corneille S; Azhagiri AK; Svab Z; Maliga P
    Plant J; 2004 Mar; 37(6):906-13. PubMed ID: 14996222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual spectinomycin resistance (aadA(au)) gene for facile identification of transplastomic sectors in tobacco leaves.
    Tungsuchat-Huang T; Slivinski KM; Sinagawa-Garcia SR; Maliga P
    Plant Mol Biol; 2011 Jul; 76(3-5):453-61. PubMed ID: 21193947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A guide to choosing vectors for transformation of the plastid genome of higher plants.
    Lutz KA; Azhagiri AK; Tungsuchat-Huang T; Maliga P
    Plant Physiol; 2007 Dec; 145(4):1201-10. PubMed ID: 17965179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of antibiotic resistance genes from transgenic tobacco plastids.
    Iamtham S; Day A
    Nat Biotechnol; 2000 Nov; 18(11):1172-6. PubMed ID: 11062436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple pathways for Cre/lox-mediated recombination in plastids.
    Hajdukiewicz PT; Gilbertson L; Staub JM
    Plant J; 2001 Jul; 27(2):161-70. PubMed ID: 11489193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionality of the beta/six site-specific recombination system in tobacco and Arabidopsis: a novel tool for genetic engineering of plant genomes.
    Grønlund JT; Stemmer C; Lichota J; Merkle T; Grasser KD
    Plant Mol Biol; 2007 Mar; 63(4):545-56. PubMed ID: 17131098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next generation synthetic vectors for transformation of the plastid genome of higher plants.
    Sinagawa-García SR; Tungsuchat-Huang T; Paredes-López O; Maliga P
    Plant Mol Biol; 2009 Jul; 70(5):487-98. PubMed ID: 19387846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extrachromosomal elements in tobacco plastids.
    Staub JM; Maliga P
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7468-72. PubMed ID: 8052605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.