These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20228356)

  • 41. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
    Aono H; Liang F; Liu H
    J Exp Biol; 2008 Jan; 211(Pt 2):239-57. PubMed ID: 18165252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinematics and power requirements of ascending and descending flight in the pigeon (Columba livia).
    Berg AM; Biewener AA
    J Exp Biol; 2008 Apr; 211(Pt 7):1120-30. PubMed ID: 18344487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scaling of nectar foraging in orchid bees.
    Borrell BJ
    Am Nat; 2007 May; 169(5):569-80. PubMed ID: 17427129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contractile properties of the pigeon supracoracoideus during different modes of flight.
    Tobalske BW; Biewener AA
    J Exp Biol; 2008 Jan; 211(Pt 2):170-9. PubMed ID: 18165244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats.
    Voigt CC; Winter Y
    J Comp Physiol B; 1999 Feb; 169(1):38-48. PubMed ID: 10093905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Setting the pace of life: membrane composition of flight muscle varies with metabolic rate of hovering orchid bees.
    Rodríguez E; Weber JM; Pagé B; Roubik DW; Suarez RK; Darveau CA
    Proc Biol Sci; 2015 Mar; 282(1802):. PubMed ID: 25652831
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flight respiration and energetics.
    Harrison JF; Roberts SP
    Annu Rev Physiol; 2000; 62():179-205. PubMed ID: 10845089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. What causes wing wear in foraging bumble bees?
    Foster DJ; Cartar RV
    J Exp Biol; 2011 Jun; 214(Pt 11):1896-901. PubMed ID: 21562177
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta.
    George NT; Sponberg S; Daniel TL
    J Exp Biol; 2012 Feb; 215(Pt 3):471-9. PubMed ID: 22246256
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Behavioural, morphological, and metabolic maturation of newly emerged adult workers of the bumblebee, Bombus impatiens.
    Skandalis DA; Roy C; Darveau CA
    J Insect Physiol; 2011 Jun; 57(6):704-11. PubMed ID: 21335010
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Size-dependent Scaling of Stingless Bee Flight Metabolism Reveals an Energetic Benefit to Small Body Size.
    Duell ME; Klok CJ; Roubik DW; Harrison JF
    Integr Comp Biol; 2022 Sep; 62(5):1429-38. PubMed ID: 36066644
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The mechanical power output of the flight muscles of blue-breasted quail (Coturnix chinensis) during take-off.
    Askew GN; Marsh RL; Ellington CP
    J Exp Biol; 2001 Nov; 204(Pt 21):3601-19. PubMed ID: 11719527
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temperature gradients in the flight muscles of Manduca sexta imply a spatial gradient in muscle force and energy output.
    George NT; Daniel TL
    J Exp Biol; 2011 Mar; 214(Pt 6):894-900. PubMed ID: 21346115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Allometry of maximum vertical force production during hovering flight of neotropical orchid bees (Apidae: Euglossini).
    Dillon ME; Dudley R
    J Exp Biol; 2004 Jan; 207(Pt 3):417-25. PubMed ID: 14691089
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures.
    Dudley R; Winter Y
    J Exp Biol; 2002 Dec; 205(Pt 23):3669-77. PubMed ID: 12409493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Body size allometry impacts flight-related morphology and metabolic rates in the solitary bee Megachile rotundata.
    Grula CC; Rinehart JP; Greenlee KJ; Bowsher JH
    J Insect Physiol; 2021; 133():104275. PubMed ID: 34217739
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative energetics of the giant hummingbird (Patagona gigas).
    Fernández MJ; Dudley R; Bozinovic F
    Physiol Biochem Zool; 2011; 84(3):333-40. PubMed ID: 21527824
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flight of the honeybee. V. Drag and lift coefficients of the bee's body; implications for flight dynamics.
    Nachtigall W; Hanauer-Thieser U
    J Comp Physiol B; 1992; 162(3):267-77. PubMed ID: 1613166
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rolling with the flow: bumblebees flying in unsteady wakes.
    Ravi S; Crall JD; Fisher A; Combes SA
    J Exp Biol; 2013 Nov; 216(Pt 22):4299-309. PubMed ID: 24031057
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Myofibrillar ATP-splitting in the elementary contractile cycle of an insect flight muscle.
    Breull W
    Experientia; 1971 Jul; 27(7):779-81. PubMed ID: 4257945
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.