BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20228408)

  • 1. Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers.
    Moullintraffort L; Bruneaux M; Nazabal A; Allegro D; Giudice E; Zal F; Peyrot V; Barbier P; Thomas D; Garnier C
    J Biol Chem; 2010 May; 285(20):15100-15110. PubMed ID: 20228408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hsp90 Oligomers Interacting with the Aha1 Cochaperone: An Outlook for the Hsp90 Chaperone Machineries.
    Lepvrier E; Moullintraffort L; Nigen M; Goude R; Allegro D; Barbier P; Peyrot V; Thomas D; Nazabal A; Garnier C
    Anal Chem; 2015 Jul; 87(14):7043-51. PubMed ID: 26076190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp90 oligomerization process: How can p23 drive the chaperone machineries?
    Lepvrier E; Nigen M; Moullintraffort L; Chat S; Allegro D; Barbier P; Thomas D; Nazabal A; Garnier C
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1412-24. PubMed ID: 26151834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic properties and quaternary structure of the 90 kDa heat-shock protein: effects of divalent cations.
    Garnier C; Barbier P; Devred F; Rivas G; Peyrot V
    Biochemistry; 2002 Oct; 41(39):11770-8. PubMed ID: 12269819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hexameric structures of human heat shock protein 90.
    Lee CC; Lin TW; Ko TP; Wang AH
    PLoS One; 2011; 6(5):e19961. PubMed ID: 21647436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry.
    Garnier C; Lafitte D; Jorgensen TJ; Jensen ON; Briand C; Peyrot V
    Eur J Biochem; 2001 Apr; 268(8):2402-7. PubMed ID: 11298759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two-state process of the heat shock protein 90 thermal denaturation: effect of calcium and magnesium.
    Garnier C; Protasevich I; Gilli R; Tsvetkov P; Lobachov V; Peyrot V; Briand C; Makarov A
    Biochem Biophys Res Commun; 1998 Aug; 249(1):197-201. PubMed ID: 9705856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and structural studies of the interaction of Cdc37 with Hsp90.
    Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED
    J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions.
    Chadli A; Ladjimi MM; Baulieu EE; Catelli MG
    J Biol Chem; 1999 Feb; 274(7):4133-9. PubMed ID: 9933607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J; Buse K; Verkhivker GM
    PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional differences of cytosolic 90-kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana.
    Cha JY; Ahn G; Kim JY; Kang SB; Kim MR; Su'udi M; Kim WY; Son D
    Plant Physiol Biochem; 2013 Sep; 70():368-73. PubMed ID: 23827697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria.
    García-Descalzo L; Alcazar A; Baquero F; Cid C
    Cell Stress Chaperones; 2011 Mar; 16(2):203-18. PubMed ID: 20890740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of the weak ATPase activity of human hsp90 by a client protein.
    McLaughlin SH; Smith HW; Jackson SE
    J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of NASP with HSP90 in mouse spermatogenic cells: stimulation of ATPase activity and transport of linker histones into nuclei.
    Alekseev OM; Widgren EE; Richardson RT; O'Rand MG
    J Biol Chem; 2005 Jan; 280(4):2904-11. PubMed ID: 15533935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The charged linker of the molecular chaperone Hsp90 modulates domain contacts and biological function.
    Jahn M; Rehn A; Pelz B; Hellenkamp B; Richter K; Rief M; Buchner J; Hugel T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17881-6. PubMed ID: 25468961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The region adjacent to the highly immunogenic site and shielded by the middle domain is responsible for self-oligomerization/client binding of the HSP90 molecular chaperone.
    Nemoto TK; Fukuma Y; Yamada S; Kobayakawa T; Ono T; Ohara-Nemoto Y
    Biochemistry; 2004 Jun; 43(23):7628-36. PubMed ID: 15182205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hsp90 chaperone machinery: from structure to drug development.
    Hahn JS
    BMB Rep; 2009 Oct; 42(10):623-30. PubMed ID: 19874705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cochaperone CHIP marks Hsp70- and Hsp90-bound substrates for degradation through a very flexible mechanism.
    Quintana-Gallardo L; Martín-Benito J; Marcilla M; Espadas G; Sabidó E; Valpuesta JM
    Sci Rep; 2019 Mar; 9(1):5102. PubMed ID: 30911017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
    Yamada S; Ono T; Mizuno A; Nemoto TK
    Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.