These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 20228803)

  • 1. Conformational change of flagellin for polymorphic supercoiling of the flagellar filament.
    Maki-Yonekura S; Yonekura K; Namba K
    Nat Struct Mol Biol; 2010 Apr; 17(4):417-22. PubMed ID: 20228803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy.
    Yonekura K; Maki-Yonekura S; Namba K
    Nature; 2003 Aug; 424(6949):643-50. PubMed ID: 12904785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling.
    Samatey FA; Imada K; Nagashima S; Vonderviszt F; Kumasaka T; Yamamoto M; Namba K
    Nature; 2001 Mar; 410(6826):331-7. PubMed ID: 11268201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction.
    Yamashita I; Hasegawa K; Suzuki H; Vonderviszt F; Mimori-Kiyosue Y; Namba K
    Nat Struct Biol; 1998 Feb; 5(2):125-32. PubMed ID: 9461078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building the atomic model for the bacterial flagellar filament by electron cryomicroscopy and image analysis.
    Yonekura K; Maki-Yonekura S; Namba K
    Structure; 2005 Mar; 13(3):407-12. PubMed ID: 15766542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and CryoEM Image Analysis of the Bacterial Flagellar Filament.
    Yamaguchi T; Miyata T; Makino F; Namba K
    Methods Mol Biol; 2023; 2646():43-53. PubMed ID: 36842105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament.
    Mimori-Kiyosue Y; Vonderviszt F; Yamashita I; Fujiyoshi Y; Namba K
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15108-13. PubMed ID: 8986772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of flagellar hydrogen bonding in Salmonella motility and flagellar polymorphic transition.
    Wang C; Lunelli M; Zschieschang E; Bosse JB; Thuenauer R; Kolbe M
    Mol Microbiol; 2019 Nov; 112(5):1519-1530. PubMed ID: 31444817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy.
    Mimori Y; Yamashita I; Murata K; Fujiyoshi Y; Yonekura K; Toyoshima C; Namba K
    J Mol Biol; 1995 May; 249(1):69-87. PubMed ID: 7776377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between supercoiling and conformational motions of the bacterial flagellar filament.
    Stadler AM; Unruh T; Namba K; Samatey F; Zaccai G
    Biophys J; 2013 Nov; 105(9):2157-65. PubMed ID: 24209861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Functional Comparison of
    Yamaguchi T; Toma S; Terahara N; Miyata T; Ashihara M; Minamino T; Namba K; Kato T
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32041169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switch interactions control energy frustration and multiple flagellar filament structures.
    Kitao A; Yonekura K; Maki-Yonekura S; Samatey FA; Imada K; Namba K; Go N
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4894-9. PubMed ID: 16549789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The axial alpha-helices and radial spokes in the core of the cryo-negatively stained complex flagellar filament of Pseudomonas rhodos: recovering high-resolution details from a flexible helical assembly.
    Cohen-Krausz S; Trachtenberg S
    J Mol Biol; 2003 Aug; 331(5):1093-108. PubMed ID: 12927544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A "mechanistic" explanation of the multiple helical forms adopted by bacterial flagellar filaments.
    Calladine CR; Luisi BF; Pratap JV
    J Mol Biol; 2013 Mar; 425(5):914-28. PubMed ID: 23274110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Key amino acid residues involved in the transitions of L- to R-type protofilaments of the Salmonella flagellar filament.
    Hayashi F; Tomaru H; Furukawa E; Ikeda K; Fukano H; Oosawa K
    J Bacteriol; 2013 Aug; 195(16):3503-13. PubMed ID: 23729653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosslinked flagella as a stabilized vaccine adjuvant scaffold.
    Gries CM; Mohan RR; Morikis D; Lo DD
    BMC Biotechnol; 2019 Jul; 19(1):48. PubMed ID: 31319823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism.
    Mimori-Kiyosue Y; Vonderviszt F; Namba K
    J Mol Biol; 1997 Jul; 270(2):222-37. PubMed ID: 9236124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent evolution in the supercoiling of prokaryotic flagellar filaments.
    Kreutzberger MAB; Sonani RR; Liu J; Chatterjee S; Wang F; Sebastian AL; Biswas P; Ewing C; Zheng W; Poly F; Frankel G; Luisi BF; Calladine CR; Krupovic M; Scharf BE; Egelman EH
    Cell; 2022 Sep; 185(19):3487-3500.e14. PubMed ID: 36057255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap compression/extension mechanism of bacterial flagellar hook as the molecular universal joint.
    Furuta T; Samatey FA; Matsunami H; Imada K; Namba K; Kitao A
    J Struct Biol; 2007 Mar; 157(3):481-90. PubMed ID: 17142059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular switch: subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments.
    Trachtenberg S; DeRosier DJ
    J Mol Biol; 1991 Jul; 220(1):67-77. PubMed ID: 2067019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.