BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20229010)

  • 1. Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry.
    Lai H; Leung A; Magee M; Almirall JR
    Anal Bioanal Chem; 2010 Apr; 396(8):2997-3007. PubMed ID: 20229010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection.
    Perr JM; Furton KG; Almirall JR
    J Sep Sci; 2005 Feb; 28(2):177-83. PubMed ID: 15754826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry.
    Lai H; Guerra P; Joshi M; Almirall JR
    J Sep Sci; 2008 Feb; 31(2):402-12. PubMed ID: 18196520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the volatile chemical markers of explosives using novel solid phase microextraction coupled to ion mobility spectrometry.
    Guerra P; Lai H; Almirall JR
    J Sep Sci; 2008 Aug; 31(15):2891-8. PubMed ID: 18666175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the headspace composition of smokeless powders using GC-MS, GC-μECD and ion mobility spectrometry.
    Joshi M; Rigsby K; Almirall JR
    Forensic Sci Int; 2011 May; 208(1-3):29-36. PubMed ID: 21109373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement in sample collection for the detection of MDMA using a novel planar SPME (PSPME) device coupled to ion mobility spectrometry (IMS).
    Gura S; Guerra-Diaz P; Lai H; Almirall JR
    Drug Test Anal; 2009 Jul; 1(7):355-62. PubMed ID: 20355214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Headspace sampling and detection of cocaine, MDMA, and marijuana via volatile markers in the presence of potential interferences by solid phase microextraction-ion mobility spectrometry (SPME-IMS).
    Lai H; Corbin I; Almirall JR
    Anal Bioanal Chem; 2008 Sep; 392(1-2):105-13. PubMed ID: 18600317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of volatiles from explosive initiators and plastic-bonded explosives (PBX) using headspace solid-phase microextraction coupled with gas chromatography - mass spectrometry (SPME/GC-MS).
    Hecker AJ; Goodpaster JV
    J Forensic Sci; 2024 May; 69(3):847-855. PubMed ID: 38362839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry.
    Najarro M; Dávila Morris ME; Staymates ME; Fletcher R; Gillen G
    Analyst; 2012 Jun; 137(11):2614-22. PubMed ID: 22498665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of SRM 2907 trace terrorist explosives simulants for the detection of Semtex and triacetone triperoxide.
    MacCrehan W; Moore S; Hancock D
    Anal Chem; 2011 Dec; 83(23):9054-9. PubMed ID: 22004378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS).
    Holopainen S; Luukkonen V; Nousiainen M; Sillanpää M
    Talanta; 2013 Sep; 114():176-82. PubMed ID: 23953458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization.
    Cotte-Rodríguez I; Takáts Z; Talaty N; Chen H; Cooks RG
    Anal Chem; 2005 Nov; 77(21):6755-64. PubMed ID: 16255571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test method for vapor collection and ion mobility detection of explosives with low vapor pressure.
    Son CE; Choi HR; Choi SS
    Rapid Commun Mass Spectrom; 2023 Dec; 37(23):e9645. PubMed ID: 37942691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.
    Kozole J; Levine LA; Tomlinson-Phillips J; Stairs JR
    Talanta; 2015 Aug; 140():10-19. PubMed ID: 26048817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of odor signatures of smokeless powders using solid phase microextraction coupled to an ion mobility spectrometer.
    Joshi M; Delgado Y; Guerra P; Lai H; Almirall JR
    Forensic Sci Int; 2009 Jul; 188(1-3):112-8. PubMed ID: 19410393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection.
    Harper RJ; Almirall JR; Furton KG
    Talanta; 2005 Aug; 67(2):313-27. PubMed ID: 18970171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle characteristics of trace high explosives: RDX and PETN.
    Verkouteren JR
    J Forensic Sci; 2007 Mar; 52(2):335-40. PubMed ID: 17316229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency headspace sampling of volatile organic compounds in explosives using capillary microextraction of volatiles (CMV) coupled to gas chromatography-mass spectrometry (GC-MS).
    Fan W; Almirall J
    Anal Bioanal Chem; 2014 Mar; 406(8):2189-95. PubMed ID: 24141390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct real-time detection of vapors from explosive compounds.
    Ewing RG; Clowers BH; Atkinson DA
    Anal Chem; 2013 Nov; 85(22):10977-83. PubMed ID: 24090362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an odor permeable membrane device for the storage of explosives and use as canine training aids.
    Davis K; Reavis M; Goodpaster JV
    J Forensic Sci; 2023 May; 68(3):815-827. PubMed ID: 36912418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.