BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1013 related articles for article (PubMed ID: 2022946)

  • 21. Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells.
    Yuan Q; Ray RM; Viar MJ; Johnson LR
    Am J Physiol Gastrointest Liver Physiol; 2001 Jan; 280(1):G130-8. PubMed ID: 11123206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered polyamine metabolism in Chinese hamster cells growing in a defined medium.
    Sertich GJ; Glass JR; Fuller DJ; Gerner EW
    J Cell Physiol; 1986 Apr; 127(1):114-20. PubMed ID: 3958058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aging alters ornithine decarboxylase and decreases polyamines in regenerating rat liver but putrescine replacement has no effect.
    Beyer HS; Ellefson M; Sherman R; Zieve L
    J Lab Clin Med; 1992 Jan; 119(1):38-47. PubMed ID: 1727906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relative abilities of bis(ethyl) derivatives of putrescine, spermidine, and spermine to regulate polyamine biosynthesis and inhibit L1210 leukemia cell growth.
    Porter CW; McManis J; Casero RA; Bergeron RJ
    Cancer Res; 1987 Jun; 47(11):2821-5. PubMed ID: 3567905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyamine biosynthesis in Phytomonas: biochemical characterisation of a very unstable ornithine decarboxylase.
    Marcora MS; Cejas S; González NS; Carrillo C; Algranati ID
    Int J Parasitol; 2010 Oct; 40(12):1389-94. PubMed ID: 20406645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of DL-alpha-methylornithine on proliferation and polyamine content of 9L rat brain tumor cells.
    Seidenfeld J; Marton LJ
    Cancer Res; 1980 Jun; 40(6):1961-6. PubMed ID: 7371031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An appraisal of the developmental importance of polyamine changes in early Xenopus embryos.
    Osborne HB; Cormier P; Lorillon O; Maniey D; Bellé R
    Int J Dev Biol; 1993 Dec; 37(4):615-8. PubMed ID: 8180006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative effects of TGFbeta on proliferation of 7- and 14-day-old chick embryo fibroblasts and lack of involvement of the ODC/PA system in the TGFbeta signaling pathway.
    Evangelisti R; Valeno V; Bosi G; Baroni T; Bellucci C; Carinci P
    J Cell Physiol; 1999 Mar; 178(3):304-10. PubMed ID: 9989776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in ornithine decarboxylase activity in rat intestines during aging.
    Ball WJ; Balis ME
    Cancer Res; 1976 Sep; 36(9 pt.1):3312-6. PubMed ID: 975092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of potassium channels in the hearts of transgenic and mutant mice with altered polyamine biosynthesis.
    Lopatin AN; Shantz LM; Mackintosh CA; Nichols CG; Pegg AE
    J Mol Cell Cardiol; 2000 Nov; 32(11):2007-24. PubMed ID: 11040105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epidermal keratinocytes actively maintain their intracellular polyamine levels.
    Roseeuw DI; Marcelo CL; Rhodes LM; Voorhees JJ
    Cell Tissue Kinet; 1983 Sep; 16(5):493-504. PubMed ID: 6192925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyamine metabolism in enucleated mouse L-cells.
    McCormick F
    J Cell Physiol; 1977 Nov; 93(2):285-92. PubMed ID: 563408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes of serum-induced ornithine decarboxylase activity and putrescine content during aging of IMR-90 human diploid fibroblasts.
    Chen KY; Chang ZF; Liu AY
    J Cell Physiol; 1986 Nov; 129(2):142-6. PubMed ID: 3771651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyamine metabolism in normal and in virus-transformed chick embryo fibroblasts.
    Don S; Bachrach U
    Cancer Res; 1975 Dec; 35(12):3618-22. PubMed ID: 172229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat.
    Humphreys MH; Etheredge SB; Lin SY; Ribstein J; Marton LJ
    Am J Physiol; 1988 Aug; 255(2 Pt 2):F270-7. PubMed ID: 3136663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of ornithine decarboxylase suppression and polyamine depletion in the antiproliferative activity of polyamine analogs.
    Ghoda L; Basu HS; Porter CW; Marton LJ; Coffino P
    Mol Pharmacol; 1992 Aug; 42(2):302-6. PubMed ID: 1513327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endogenous polyamine levels in macrophages is sufficient to support growth of Toxoplasma gondii.
    Seabra SH; DaMatta RA; de Mello FG; de Souza W
    J Parasitol; 2004 Jun; 90(3):455-60. PubMed ID: 15270085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Postnatal changes in cochlear polyamine metabolism in the rat.
    Brock M; Henley CM
    Hear Res; 1994 Jan; 72(1-2):37-43. PubMed ID: 8150743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of S-adenosyl-1,8-diamino-3-thio-octane and S-methyl-5'-methylthioadenosine on polyamine synthesis in Ehrlich ascites-tumour cells.
    Holm I; Persson L; Pegg AE; Heby O
    Biochem J; 1989 Jul; 261(1):205-10. PubMed ID: 2775206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of ornithine decarboxylase and polyamines in early postnatal lung growth.
    Thet LA; Parra SC
    J Appl Physiol (1985); 1986 Nov; 61(5):1661-6. PubMed ID: 3096943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.