BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20229581)

  • 1. Predicting fatigue during electrically stimulated non-isometric contractions.
    Marion MS; Wexler AS; Hull ML
    Muscle Nerve; 2010 Jun; 41(6):857-67. PubMed ID: 20229581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the effect of muscle length on fatigue during electrical stimulation.
    Marion MS; Wexler AS; Hull ML; Binder-Macleod SA
    Muscle Nerve; 2009 Oct; 40(4):573-81. PubMed ID: 19626673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadriceps femoris muscle torques and fatigue generated by neuromuscular electrical stimulation with three different waveforms.
    Laufer Y; Ries JD; Leininger PM; Alon G
    Phys Ther; 2001 Jul; 81(7):1307-16. PubMed ID: 11444994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration.
    Marion MS; Wexler AS; Hull ML
    J Neuroeng Rehabil; 2013 Feb; 10():13. PubMed ID: 23374142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central and peripheral contributions to fatigue after electrostimulation training.
    Gondin J; Guette M; Jubeau M; Ballay Y; Martin A
    Med Sci Sports Exerc; 2006 Jun; 38(6):1147-56. PubMed ID: 16775557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using evoked EMG as a synthetic force sensor of isometric electrically stimulated muscle.
    Erfanian A; Chizeck HJ; Hashemi RM
    IEEE Trans Biomed Eng; 1998 Feb; 45(2):188-202. PubMed ID: 9473842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle fatigue resistance during stimulated contractions is reduced in young male smokers.
    Morse CI; Wüst RC; Jones DA; de Haan A; Degens H
    Acta Physiol (Oxf); 2007 Oct; 191(2):123-9. PubMed ID: 17550408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains.
    Karu ZZ; Durfee WK; Barzilai AM
    IEEE Trans Biomed Eng; 1995 Aug; 42(8):809-17. PubMed ID: 7642195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women.
    Yoon T; Schlinder Delap B; Griffith EE; Hunter SK
    Muscle Nerve; 2007 Oct; 36(4):515-24. PubMed ID: 17626289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new EMG frequency-based fatigue threshold test.
    Hendrix CR; Housh TJ; Johnson GO; Mielke M; Camic CL; Zuniga JM; Schmidt RJ
    J Neurosci Methods; 2009 Jun; 181(1):45-51. PubMed ID: 19394361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanomyographic frequency-based fatigue threshold test.
    Hendrix CR; Housh TJ; Zuniga JM; Camic CL; Mielke M; Johnson GO; Schmidt RJ
    J Neurosci Methods; 2010 Mar; 187(1):1-7. PubMed ID: 19945484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contractile properties, fatigue and recovery are not influenced by short-term creatine supplementation in human muscle.
    Jakobi JM; Rice CL; Curtin SV; Marsh GD
    Exp Physiol; 2000 Jul; 85(4):451-60. PubMed ID: 10918084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gender-specific knee extensor torque, flexor torque, and muscle fatigue responses during maximal effort contractions.
    Pincivero DM; Gandaio CM; Ito Y
    Eur J Appl Physiol; 2003 Apr; 89(2):134-41. PubMed ID: 12665976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.
    Thrasher A; Graham GM; Popovic MR
    Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue reduction by sequential stimulation of multiple motor points in a muscle.
    Lau HK; Liu J; Pereira BP; Kumar VP; Pho RW
    Clin Orthop Relat Res; 1995 Dec; (321):251-8. PubMed ID: 7497677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of critical force to EMG fatigue thresholds during isometric leg extension.
    Hendrix CR; Housh TJ; Johnson GO; Mielke M; Camic CL; Zuniga JM; Schmidt RJ
    Med Sci Sports Exerc; 2009 Apr; 41(4):956-64. PubMed ID: 19276836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course of mechanical and neuromuscular characteristics of cyclists and triathletes during a fatiguing exercise.
    Garrandes F; Colson SS; Pensini M; Legros P
    Int J Sports Med; 2007 Feb; 28(2):148-56. PubMed ID: 17024624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-dependent coexistence of muscle fatigue and potentiation assessed by concentric isotonic contractions in human plantar flexors.
    Zero AM; Paris MT; Rice CL
    J Appl Physiol (1985); 2022 Aug; 133(2):490-505. PubMed ID: 35796610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.