BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20229857)

  • 1. 2D model-based reconstruction for magnetic particle imaging.
    Knopp T; Biederer S; Sattel TF; Rahmer J; Weizenecker J; Gleich B; Borgert J; Buzug TM
    Med Phys; 2010 Feb; 37(2):485-91. PubMed ID: 20229857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic particle imaging: introduction to imaging and hardware realization.
    Buzug TM; Bringout G; Erbe M; Gräfe K; Graeser M; Grüttner M; Halkola A; Sattel TF; Tenner W; Wojtczyk H; Haegele J; Vogt FM; Barkhausen J; Lüdtke-Buzug K
    Z Med Phys; 2012 Dec; 22(4):323-34. PubMed ID: 22909418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal encoding in magnetic particle imaging: properties of the system function.
    Rahmer J; Weizenecker J; Gleich B; Borgert J
    BMC Med Imaging; 2009 Apr; 9():4. PubMed ID: 19335923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based reconstruction for magnetic particle imaging.
    Knopp T; Sattel TF; Biederer S; Rahmer J; Weizenecker J; Gleich B; Borgert J; Buzug TM
    IEEE Trans Med Imaging; 2010 Jan; 29(1):12-8. PubMed ID: 19435678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the formulation of the image reconstruction problem in magnetic particle imaging.
    Grüttner M; Knopp T; Franke J; Heidenreich M; Rahmer J; Halkola A; Kaethner C; Borgert J; Buzug TM
    Biomed Tech (Berl); 2013 Dec; 58(6):583-91. PubMed ID: 24088606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a 3-D system function measured for magnetic particle imaging.
    Rahmer J; Weizenecker J; Gleich B; Borgert J
    IEEE Trans Med Imaging; 2012 Jun; 31(6):1289-99. PubMed ID: 22361663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process.
    Knopp T; Biederer S; Sattel TF; Erbe M; Buzug TM
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1284-92. PubMed ID: 21317081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerically efficient estimation of relaxation effects in magnetic particle imaging.
    Rückert MA; Vogel P; Jakob PM; Behr VC
    Biomed Tech (Berl); 2013 Dec; 58(6):593-600. PubMed ID: 24277955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach.
    Dieckhoff J; Kaul MG; Mummert T; Jung C; Salamon J; Adam G; Knopp T; Ludwig F; Balceris C; Ittrich H
    Phys Med Biol; 2017 May; 62(9):3470-3482. PubMed ID: 28035904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic 3-D magnetic particle imaging simulation model for quantitative analysis of reconstruction image quality.
    Shen Y; Zhang L; Hui H; Guo L; Wang T; Yang G; Tian J
    Comput Methods Programs Biomed; 2024 Jul; 252():108250. PubMed ID: 38815547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of magnetic nanoparticle systems with respect to their magnetic particle imaging performance.
    Ludwig F; Eberbeck D; Löwa N; Steinhoff U; Wawrzik T; Schilling M; Trahms L
    Biomed Tech (Berl); 2013 Dec; 58(6):535-45. PubMed ID: 23751379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamentals and applications of magnetic particle imaging.
    Borgert J; Schmidt JD; Schmale I; Rahmer J; Bontus C; Gleich B; David B; Eckart R; Woywode O; Weizenecker J; Schnorr J; Taupitz M; Haegele J; Vogt FM; Barkhausen J
    J Cardiovasc Comput Tomogr; 2012; 6(3):149-53. PubMed ID: 22682260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analog receive signal processing for magnetic particle imaging.
    Graeser M; Knopp T; Grüttner M; Sattel TF; Buzug TM
    Med Phys; 2013 Apr; 40(4):042303. PubMed ID: 23556916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaussian process classification of superparamagnetic relaxometry data: Phantom study.
    Sovizi J; Mathieu KB; Thrower SL; Stefan W; Hazle JD; Fuentes D
    Artif Intell Med; 2017 Oct; 82():47-59. PubMed ID: 28911905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved field free line magnetic particle imaging using saddle coils.
    Erbe M; Sattel TF; Buzug TM
    Biomed Tech (Berl); 2013 Dec; 58(6):577-82. PubMed ID: 23934634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method.
    Ishihara Y; Honma T; Nohara S; Ito Y
    BMC Med Imaging; 2013 Jun; 13():15. PubMed ID: 23734917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First in vivo traveling wave magnetic particle imaging of a beating mouse heart.
    Vogel P; Rückert MA; Klauer P; Kullmann WH; Jakob PM; Behr VC
    Phys Med Biol; 2016 Sep; 61(18):6620-6634. PubMed ID: 27541258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging.
    Werner F; Gdaniec N; Knopp T
    Phys Med Biol; 2017 May; 62(9):3407-3421. PubMed ID: 28218613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weighted iterative reconstruction for magnetic particle imaging.
    Knopp T; Rahmer J; Sattel TF; Biederer S; Weizenecker J; Gleich B; Borgert J; Buzug TM
    Phys Med Biol; 2010 Mar; 55(6):1577-89. PubMed ID: 20164532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI.
    de Rochefort L; Nguyen T; Brown R; Spincemaille P; Choi G; Weinsaft J; Prince MR; Wang Y
    Med Phys; 2008 Dec; 35(12):5328-39. PubMed ID: 19175092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.