These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 20230009)
1. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study. Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009 [TBL] [Abstract][Full Text] [Related]
2. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study. Nelson TR; Chaban VV; Prezhdo VV; Prezhdo OV J Phys Chem B; 2011 May; 115(18):5260-7. PubMed ID: 21082855 [TBL] [Abstract][Full Text] [Related]
3. Density, distribution, and orientation of water molecules inside and outside carbon nanotubes. Thomas JA; McGaughey AJ J Chem Phys; 2008 Feb; 128(8):084715. PubMed ID: 18315080 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes. Pei QX; Lim CG; Cheng Y; Gao H J Chem Phys; 2008 Sep; 129(12):125101. PubMed ID: 19045062 [TBL] [Abstract][Full Text] [Related]
5. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules. Shen JW; Wu T; Wang Q; Kang Y; Chen X Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602 [TBL] [Abstract][Full Text] [Related]
6. Fluid structure and transport properties of water inside carbon nanotubes. Liu Y; Wang Q; Wu T; Zhang L J Chem Phys; 2005 Dec; 123(23):234701. PubMed ID: 16392938 [TBL] [Abstract][Full Text] [Related]
7. Heat-driven release of a drug molecule from carbon nanotubes: a molecular dynamics study. Chaban VV; Savchenko TI; Kovalenko SM; Prezhdo OV J Phys Chem B; 2010 Oct; 114(42):13481-6. PubMed ID: 20831145 [TBL] [Abstract][Full Text] [Related]
8. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
9. Flow structure of water in carbon nanotubes: poiseuille type or plug-like? Hanasaki I; Nakatani A J Chem Phys; 2006 Apr; 124(14):144708. PubMed ID: 16626232 [TBL] [Abstract][Full Text] [Related]
10. Detailed atomistic simulation of the nano-sorption and nano-diffusivity of water, tyrosol, vanillic acid, and p-coumaric acid in single wall carbon nanotubes. Anastassiou A; Karahaliou EK; Alexiadis O; Mavrantzas VG J Chem Phys; 2013 Oct; 139(16):164711. PubMed ID: 24182068 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes. Hanasaki I; Nakatani A J Chem Phys; 2006 May; 124(17):174714. PubMed ID: 16689597 [TBL] [Abstract][Full Text] [Related]
12. Encapsulation of pt-labelled DNA molecules inside carbon nanotubes. Cui D; Ozkan CS; Ravindran S; Kong Y; Gao H Mech Chem Biosyst; 2004 Jun; 1(2):113-21. PubMed ID: 16783937 [TBL] [Abstract][Full Text] [Related]
13. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process. Elliott JA; Hamm M; Shibuta Y J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534 [TBL] [Abstract][Full Text] [Related]
14. The effects of confinement inside carbon nanotubes on catalysis. Pan X; Bao X Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038 [TBL] [Abstract][Full Text] [Related]
15. Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes. Tessonnier JP; Ersen O; Weinberg G; Pham-Huu C; Su DS; Schlögl R ACS Nano; 2009 Aug; 3(8):2081-9. PubMed ID: 19702319 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes. Huang LL; Zhang LZ; Shao Q; Wang J; Lu LH; Lu XH; Jiang SY; Shen WF J Phys Chem B; 2006 Dec; 110(51):25761-8. PubMed ID: 17181218 [TBL] [Abstract][Full Text] [Related]
17. Tube-tube and tube-surface interactions in straight suspended carbon nanotube structures. Abrams ZR; Hanein Y J Phys Chem B; 2006 Nov; 110(43):21419-23. PubMed ID: 17064089 [TBL] [Abstract][Full Text] [Related]
18. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. Chen W; Pan X; Bao X J Am Chem Soc; 2007 Jun; 129(23):7421-6. PubMed ID: 17508751 [TBL] [Abstract][Full Text] [Related]
19. Molecular simulations of CO2 and H2 sorption into ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in carbon nanotubes. Shi W; Sorescu DC J Phys Chem B; 2010 Nov; 114(46):15029-41. PubMed ID: 21047100 [TBL] [Abstract][Full Text] [Related]
20. Highly selective adsorption of methanol in carbon nanotubes immersed in methanol-water solution. Zhao WH; Shang B; Du SP; Yuan LF; Yang J; Zeng XC J Chem Phys; 2012 Jul; 137(3):034501. PubMed ID: 22830705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]