These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 20230028)
21. Photo-induced H2 production by [NiFe]-hydrogenase from T. roseopersicina covalently linked to a Ru(II) photosensitizer. Zadvornyy OA; Lucon JE; Gerlach R; Zorin NA; Douglas T; Elgren TE; Peters JW J Inorg Biochem; 2012 Jan; 106(1):151-5. PubMed ID: 22119807 [TBL] [Abstract][Full Text] [Related]
22. Stabilization role of a phenothiazine derivative on the electrocatalytic oxidation of hydrogen via Aquifex aeolicus hydrogenase at graphite membrane electrodes. Ciaccafava A; Infossi P; Giudici-Orticoni MT; Lojou E Langmuir; 2010 Dec; 26(23):18534-41. PubMed ID: 21043442 [TBL] [Abstract][Full Text] [Related]
23. Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli. Kim JY; Jo BH; Cha HJ J Biotechnol; 2011 Sep; 155(3):312-9. PubMed ID: 21794837 [TBL] [Abstract][Full Text] [Related]
24. Hydrogen metabolism in the hyperthermophilic bacterium Aquifex aeolicus. Guiral M; Aubert C; Giudici-Orticoni MT Biochem Soc Trans; 2005 Feb; 33(Pt 1):22-4. PubMed ID: 15667254 [TBL] [Abstract][Full Text] [Related]
25. Direct electrochemical study of the multiple redox centers of hydrogenase from Desulfovibrio gigas. Cordas CM; Moura I; Moura JJ Bioelectrochemistry; 2008 Nov; 74(1):83-9. PubMed ID: 18632311 [TBL] [Abstract][Full Text] [Related]
26. The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance. Kwan P; McIntosh CL; Jennings DP; Hopkins RC; Chandrayan SK; Wu CH; Adams MW; Jones AK J Am Chem Soc; 2015 Oct; 137(42):13556-65. PubMed ID: 26436715 [TBL] [Abstract][Full Text] [Related]
27. The oxygen-tolerant hydrogenase I from Aquifex aeolicus weakly interacts with carbon monoxide: an electrochemical and time-resolved FTIR study. Pandelia ME; Infossi P; Giudici-Orticoni MT; Lubitz W Biochemistry; 2010 Oct; 49(41):8873-81. PubMed ID: 20815411 [TBL] [Abstract][Full Text] [Related]
28. On the relationship between affinity for molecular hydrogen and the physiological directionality of hydrogenases. van Haaster DJ; Hagedoorn PL; Jongejan JA; Hagen WR Biochem Soc Trans; 2005 Feb; 33(Pt 1):12-4. PubMed ID: 15667251 [TBL] [Abstract][Full Text] [Related]
29. Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. Vincent KA; Parkin A; Lenz O; Albracht SP; Fontecilla-Camps JC; Cammack R; Friedrich B; Armstrong FA J Am Chem Soc; 2005 Dec; 127(51):18179-89. PubMed ID: 16366571 [TBL] [Abstract][Full Text] [Related]
30. Approaches to developing biological H(2)-photoproducing organisms and processes. Ghirardi ML; King PW; Posewitz MC; Maness PC; Fedorov A; Kim K; Cohen J; Schulten K; Seibert M Biochem Soc Trans; 2005 Feb; 33(Pt 1):70-2. PubMed ID: 15667268 [TBL] [Abstract][Full Text] [Related]
31. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli. Kim JY; Jo BH; Cha HJ Microb Cell Fact; 2010 Jul; 9():54. PubMed ID: 20604966 [TBL] [Abstract][Full Text] [Related]
32. Hydrogen-induced activation of the [NiFe]-hydrogenase from Allochromatium vinosum as studied by stopped-flow infrared spectroscopy. Kurkin S; George SJ; Thorneley RN; Albracht SP Biochemistry; 2004 Jun; 43(21):6820-31. PubMed ID: 15157116 [TBL] [Abstract][Full Text] [Related]
33. The Model [NiFe]-Hydrogenases of Escherichia coli. Sargent F Adv Microb Physiol; 2016; 68():433-507. PubMed ID: 27134027 [TBL] [Abstract][Full Text] [Related]
34. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. Schut GJ; Boyd ES; Peters JW; Adams MW FEMS Microbiol Rev; 2013 Mar; 37(2):182-203. PubMed ID: 22713092 [TBL] [Abstract][Full Text] [Related]
35. Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site. Breglia R; Greco C; Fantucci P; De Gioia L; Bruschi M Phys Chem Chem Phys; 2018 Jan; 20(3):1693-1706. PubMed ID: 29264600 [TBL] [Abstract][Full Text] [Related]
37. Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. Luo X; Brugna M; Tron-Infossi P; Giudici-Orticoni MT; Lojou E J Biol Inorg Chem; 2009 Nov; 14(8):1275-88. PubMed ID: 19629542 [TBL] [Abstract][Full Text] [Related]
38. Spectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii. Silakov A; Kamp C; Reijerse E; Happe T; Lubitz W Biochemistry; 2009 Aug; 48(33):7780-6. PubMed ID: 19634879 [TBL] [Abstract][Full Text] [Related]
39. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472 [TBL] [Abstract][Full Text] [Related]
40. Hydrogenases and H(+)-reduction in primary energy conservation. Vignais PM Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]