These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 20230610)
1. Self-adaptive robot training of stroke survivors for continuous tracking movements. Vergaro E; Casadio M; Squeri V; Giannoni P; Morasso P; Sanguineti V J Neuroeng Rehabil; 2010 Mar; 7():13. PubMed ID: 20230610 [TBL] [Abstract][Full Text] [Related]
2. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study. Masia L; Casadio M; Giannoni P; Sandini G; Morasso P J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873 [TBL] [Abstract][Full Text] [Related]
3. Bilateral robot therapy based on haptics and reinforcement learning: Feasibility study of a new concept for treatment of patients after stroke. Squeri V; Casadio M; Vergaro E; Giannoni P; Morasso P; Sanguineti V J Rehabil Med; 2009 Nov; 41(12):961-5. PubMed ID: 19841824 [TBL] [Abstract][Full Text] [Related]
4. Robot therapy for stroke survivors: proprioceptive training and regulation of assistance. Sanguineti V; Casadio M; Vergaro E; Squeri V; Giannoni P; Morasso PG Stud Health Technol Inform; 2009; 145():126-42. PubMed ID: 19592791 [TBL] [Abstract][Full Text] [Related]
5. A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Casadio M; Giannoni P; Morasso P; Sanguineti V Clin Rehabil; 2009 Mar; 23(3):217-28. PubMed ID: 19218297 [TBL] [Abstract][Full Text] [Related]
6. Impact of visual error augmentation when integrated with assist-as-needed training method in robot-assisted rehabilitation. Wang F; Barkana DE; Sarkar N IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):571-9. PubMed ID: 20639181 [TBL] [Abstract][Full Text] [Related]
7. Pulsed assistance: a new paradigm of robot training. De Santis D; Masia L; Morasso P; Squeri V; Zenzeri J; Casadio M; Riva A IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650504. PubMed ID: 24187319 [TBL] [Abstract][Full Text] [Related]
8. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. Squeri V; Masia L; Giannoni P; Sandini G; Morasso P IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271 [TBL] [Abstract][Full Text] [Related]
9. Minimally assistive robot training for proprioception enhancement. Casadio M; Morasso P; Sanguineti V; Giannoni P Exp Brain Res; 2009 Apr; 194(2):219-31. PubMed ID: 19139867 [TBL] [Abstract][Full Text] [Related]
10. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205 [TBL] [Abstract][Full Text] [Related]
11. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265 [TBL] [Abstract][Full Text] [Related]
12. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction. Chemuturi R; Amirabdollahian F; Dautenhahn K J Neuroeng Rehabil; 2013 Sep; 10():102. PubMed ID: 24073670 [TBL] [Abstract][Full Text] [Related]
13. Training stroke patients with continuous tracking movements: evaluating the improvement of voluntary control. Casadio M; Giannoni P; Morasso P; Sanguineti V; Squeri V; Vergaro E Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5961-4. PubMed ID: 19964883 [TBL] [Abstract][Full Text] [Related]
14. A Computational Index to Describe Slacking During Robot Therapy. Piovesan D Adv Exp Med Biol; 2016; 957():351-365. PubMed ID: 28035575 [TBL] [Abstract][Full Text] [Related]
15. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
16. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233 [TBL] [Abstract][Full Text] [Related]
18. RUPERT closed loop control design. Balasubramanian S; Wei R; He J Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Patton JL; Stoykov ME; Kovic M; Mussa-Ivaldi FA Exp Brain Res; 2006 Jan; 168(3):368-83. PubMed ID: 16249912 [TBL] [Abstract][Full Text] [Related]
20. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]