BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20230923)

  • 1. Phosphoproteomic analysis of primary human multiple myeloma cells.
    Ge F; Xiao CL; Yin XF; Lu CH; Zeng HL; He QY
    J Proteomics; 2010 May; 73(7):1381-90. PubMed ID: 20230923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.
    Li X; Gerber SA; Rudner AD; Beausoleil SA; Haas W; Villén J; Elias JE; Gygi SP
    J Proteome Res; 2007 Mar; 6(3):1190-7. PubMed ID: 17330950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteome analysis of fission yeast.
    Wilson-Grady JT; Villén J; Gygi SP
    J Proteome Res; 2008 Mar; 7(3):1088-97. PubMed ID: 18257517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.
    Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H
    Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.
    Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H
    J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion.
    Wang YT; Tsai CF; Hong TC; Tsou CC; Lin PY; Pan SH; Hong TM; Yang PC; Sung TY; Hsu WL; Chen YJ
    J Proteome Res; 2010 Nov; 9(11):5582-97. PubMed ID: 20815410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a global characterization of the phosphoproteome in prostate cancer cells: identification of phosphoproteins in the LNCaP cell line.
    Giorgianni F; Zhao Y; Desiderio DM; Beranova-Giorgianni S
    Electrophoresis; 2007 Jun; 28(12):2027-34. PubMed ID: 17487921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteome analysis of rat L6 myotubes using reversed-phase C18 prefractionation and titanium dioxide enrichment.
    Hou J; Cui Z; Xie Z; Xue P; Wu P; Chen X; Li J; Cai T; Yang F
    J Proteome Res; 2010 Feb; 9(2):777-88. PubMed ID: 20028136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry.
    Chen L; Giorgianni F; Beranova-Giorgianni S
    J Proteome Res; 2010 Jan; 9(1):174-8. PubMed ID: 20044836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-SILAC mix coupled with SIM/AIMS assays for targeted verification of phosphopeptides discovered in a large-scale phosphoproteome analysis of hepatocellular carcinoma.
    Lin YT; Chien KY; Wu CC; Chang WY; Chu LJ; Chen MC; Yeh CT; Yu JS
    J Proteomics; 2017 Mar; 157():40-51. PubMed ID: 28192239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphoproteome of Fusarium graminearum at the onset of nitrogen starvation.
    Rampitsch C; Subramaniam R; Djuric-Ciganovic S; Bykova NV
    Proteomics; 2010 Jan; 10(1):124-40. PubMed ID: 19899075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.
    Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X
    Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteome profile of human lung cancer cell line A549.
    Yu G; Xiao CL; Lu CH; Jia HT; Ge F; Wang W; Yin XF; Jia HL; He JX; He QY
    Mol Biosyst; 2011 Feb; 7(2):472-9. PubMed ID: 21060948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor.
    Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D
    J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome analysis by in-gel isoelectric focusing and tandem mass spectrometry.
    Beranova-Giorgianni S; Desiderio DM; Giorgianni F
    Methods Mol Biol; 2009; 519():383-96. PubMed ID: 19381597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.
    Nagano K; Shinkawa T; Mutoh H; Kondoh O; Morimoto S; Inomata N; Ashihara M; Ishii N; Aoki Y; Haramura M
    Proteomics; 2009 May; 9(10):2861-74. PubMed ID: 19415658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.