These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 20231023)
61. Dynamic Mobility of Particles with Thick Double Layers in a Nondilute Suspension. Ennis J; Shugai AA; Carnie SL J Colloid Interface Sci; 2000 Mar; 223(1):37-53. PubMed ID: 10684667 [TBL] [Abstract][Full Text] [Related]
62. Film depth and concentration banding in free-surface Couette flow of a suspension. Timberlake BD; Morris JF Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):895-910. PubMed ID: 12804220 [TBL] [Abstract][Full Text] [Related]
63. Polarizability and complex conductivity of dilute suspensions of spherical colloidal particles with charged (polyelectrolyte) coatings. Hill RJ; Saville DA; Russel WB J Colloid Interface Sci; 2003 Jul; 263(2):478-97. PubMed ID: 12909039 [TBL] [Abstract][Full Text] [Related]
64. Explicit ions condensation around strongly charged polyelectrolytes and spherical macroions: the influence of salt concentration and chain linear charge density. Monte Carlo simulations. Carnal F; Stoll S J Phys Chem A; 2012 Jun; 116(25):6600-8. PubMed ID: 22616671 [TBL] [Abstract][Full Text] [Related]
65. Effective viscosity of a concentrated suspension of uncharged spherical soft particles. Ohshima H Langmuir; 2010 May; 26(9):6287-94. PubMed ID: 20000425 [TBL] [Abstract][Full Text] [Related]
66. Dispersion of Silica Fines in Water-Ethanol Suspensions. Ren J; Song S; Lopez-Valdivieso A; Shen J; Lu S J Colloid Interface Sci; 2001 Jun; 238(2):279-284. PubMed ID: 11374922 [TBL] [Abstract][Full Text] [Related]
68. Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals. Abitbol T; Kam D; Levi-Kalisman Y; Gray DG; Shoseyov O Langmuir; 2018 Apr; 34(13):3925-3933. PubMed ID: 29513998 [TBL] [Abstract][Full Text] [Related]
69. Electroviscous sphere-wall interactions. Tabatabaei SM; van de Ven TG; Rey AD J Colloid Interface Sci; 2006 Sep; 301(1):291-301. PubMed ID: 16765371 [TBL] [Abstract][Full Text] [Related]
70. The primary electroviscous effect, free solution electrophoretic mobility, and diffusion of dilute prolate ellipsoid particles (minor axis = 3 nm) in monovalent salt solution. Allison S; Rasmusson M; Wall S J Colloid Interface Sci; 2003 Feb; 258(2):289-97. PubMed ID: 12618099 [TBL] [Abstract][Full Text] [Related]
71. The Equilibrium Properties and Microstructure of Mixtures of Colloidal Particles with Long-Range, Soft Repulsions. Hunt WJ; Zukoski CF J Colloid Interface Sci; 1999 Feb; 210(2):332-342. PubMed ID: 9929420 [TBL] [Abstract][Full Text] [Related]
72. Role of surface conductivity in the dynamic mobility of concentrated suspensions. Arroyo FJ; Cuquejo J; Delgado AV; Jiménez ML; Carrique F Langmuir; 2009 Oct; 25(20):12040-7. PubMed ID: 19764739 [TBL] [Abstract][Full Text] [Related]
73. Effective static and high-frequency viscosities of concentrated suspensions of soft particles. Mendoza CI J Chem Phys; 2011 Aug; 135(5):054904. PubMed ID: 21823729 [TBL] [Abstract][Full Text] [Related]
74. On the use of the hypothesis of local electroneutrality in colloidal suspensions for the calculation of their dielectric properties. López-García JJ; Grosse C; Horno J J Phys Chem B; 2005 Mar; 109(12):5808-15. PubMed ID: 16851633 [TBL] [Abstract][Full Text] [Related]
75. Electroneutrality and phase behavior of colloidal suspensions. Denton AR Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051401. PubMed ID: 18233653 [TBL] [Abstract][Full Text] [Related]
76. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions. Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661 [TBL] [Abstract][Full Text] [Related]
77. Role of Electrostatic Repulsion on the Viscosity of Bidisperse Silica Suspensions. Zaman AA; Moudgil BM J Colloid Interface Sci; 1999 Apr; 212(1):167-175. PubMed ID: 10072287 [TBL] [Abstract][Full Text] [Related]
78. Influence of ion size effects on the electrokinetics of aqueous salt-free colloids in alternating electric fields. Carrique F; Ruiz-Reina E; Arroyo FJ; Delgado AV Phys Rev E; 2020 Sep; 102(3-1):032614. PubMed ID: 33076032 [TBL] [Abstract][Full Text] [Related]
79. Effect of stagnant-layer conductivity on the electric permittivity of concentrated colloidal suspensions. Carrique F; Arroyo FJ; Shilov VN; Cuquejo J; Jiménez ML; Delgado AV J Chem Phys; 2007 Mar; 126(10):104903. PubMed ID: 17362083 [TBL] [Abstract][Full Text] [Related]
80. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Stieger M; Pedersen JS; Lindner P; Richtering W Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]