BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 2023127)

  • 1. Effects of low ionic strength media on passive human red cell monovalent cation transport.
    Bernhardt I; Hall AC; Ellory JC
    J Physiol; 1991 Mar; 434():489-506. PubMed ID: 2023127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of a novel organic solute transporter in mammalian red blood cells.
    Culliford SJ; Bernhardt I; Ellory JC
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):755-65. PubMed ID: 8788940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of monovalent cation influxes of diamide-treated human erythrocytes in solutions of different ionic strength.
    Ihrig I; Hessel E; Seidler G; Erdmann A; Bernhardt I
    Biochim Biophys Acta; 1991 Nov; 1069(2):171-4. PubMed ID: 1932057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitors of the K+(Na+)/H+ exchanger of human red blood cells.
    Weiss E; Lang HJ; Bernhardt I
    Bioelectrochemistry; 2004 May; 62(2):135-40. PubMed ID: 15039016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions.
    Kummerow D; Hamann J; Browning JA; Wilkins R; Ellory JC; Bernhardt I
    J Membr Biol; 2000 Aug; 176(3):207-16. PubMed ID: 10931972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the K+ (Na+)/H+ monovalent cation exchanger in the human red blood cell membrane: effects of transport inhibitors.
    Bernhardt I; Bogdanova AY; Kummerow D; Kiessling K; Hamann J; Ellory JC
    Gen Physiol Biophys; 1999 Jun; 18(2):119-37. PubMed ID: 10517288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease.
    Brugnara C; Kopin AS; Bunn HF; Tosteson DC
    J Clin Invest; 1985 May; 75(5):1608-17. PubMed ID: 3998150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride.
    Maizels M
    J Physiol; 1968 Apr; 195(3):657-79. PubMed ID: 5649640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two different oxygen sensors regulate oxygen-sensitive K+ transport in crucian carp red blood cells.
    Berenbrink M; Völkel S; Koldkjaer P; Heisler N; Nikinmaa M
    J Physiol; 2006 Aug; 575(Pt 1):37-48. PubMed ID: 16763000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K-Cl cotransport, pH, and role of Mg in volume-clamped low-K sheep erythrocytes: three equilibrium states.
    Lauf PK; Erdmann A; Adragna NC
    Am J Physiol; 1994 Jan; 266(1 Pt 1):C95-103. PubMed ID: 8304434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between temperature and tonicity on cation transport in dog red cells.
    Elford BC
    J Physiol; 1975 Mar; 246(2):371-95. PubMed ID: 806680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of human red cell sodium and potassium transport by divalent cations.
    Ellory JC; Flatman PW; Stewart GW
    J Physiol; 1983 Jul; 340():1-17. PubMed ID: 6887042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of temperature on three components of passive permeability to potassium in rodent red cells.
    Hall AC; Willis JS
    J Physiol; 1984 Mar; 348():629-43. PubMed ID: 6325676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium transport in red blood cells of frog Rana temporaria: demonstration of a K-Cl cotransport.
    Gusev GP; Agalakova NI; Lapin AV
    J Comp Physiol B; 1995; 165(3):230-7. PubMed ID: 7665736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier-mediated residual K+ and Na+ transport of human red blood cells.
    Denner K; Heinrich R; Bernhardt I
    J Membr Biol; 1993 Mar; 132(2):137-45. PubMed ID: 8496945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low potassium-type but not high potassium-type sheep red blood cells show passive K+ transport induced by low ionic strength.
    Erdmann A; Bernhardt I; Pittman SJ; Ellory JC
    Biochim Biophys Acta; 1991 Jan; 1061(1):85-8. PubMed ID: 1995059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory effects of monovalent ions on force development in detergent-skinned ventricular muscle from guinea-pig.
    Kentish JC
    J Physiol; 1984 Jul; 352():353-74. PubMed ID: 6747893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume-sensitive K transport in human erythrocytes.
    Kaji D
    J Gen Physiol; 1986 Dec; 88(6):719-38. PubMed ID: 3794638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of loop diuretics and anions on passive potassium influx into human red cells.
    Chipperfield AR
    J Physiol; 1985 Dec; 369():61-77. PubMed ID: 2419553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.