These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2023129)

  • 1. Role of the anomalous rectifier in determining membrane potentials of mouse muscle fibres at low extracellular K+.
    Siegenbeek van Heukelom J
    J Physiol; 1991 Mar; 434():549-60. PubMed ID: 2023129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the isoprenaline-induced membrane hyperpolarization of mouse skeletal muscle cells.
    van Mil HG; Kerkhof CJ; Siegenbeek van Heukelom J
    Br J Pharmacol; 1995 Dec; 116(7):2881-8. PubMed ID: 8680720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The resting potential of mouse Leydig cells: role of an electrogenic Na+/K+ pump.
    del Corsso C; Varanda WA
    J Membr Biol; 2003 Jan; 191(2):123-31. PubMed ID: 12533779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the hyperpolarizing effect of catecholamines on canine cardiac Purkinje fibres.
    Neto FR; Sperelakis N
    Br J Pharmacol; 1989 Mar; 96(3):591-8. PubMed ID: 2720294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of ion conductance changes and of the sodium-pump in adrenaline-induced hyperpolarization of rat diaphragm muscle fibres.
    Kuba K; Nohmi M
    Br J Pharmacol; 1987 Jul; 91(3):671-81. PubMed ID: 2440508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of an electrogenic sodium pump to membrane potential in mammalian skeletal muscle fibres.
    Akaike N
    J Physiol; 1975 Mar; 245(3):499-520. PubMed ID: 1142216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells.
    Friis UG; Praetorius HA; Knudsen T; Johansen T
    Br J Pharmacol; 1997 Oct; 122(4):599-604. PubMed ID: 9375953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical properties of sodium bicarbonate symport in kidney epithelial cells (BSC-1).
    Jentsch TJ; Matthes H; Keller SK; Wiederholt M
    Am J Physiol; 1986 Dec; 251(6 Pt 2):F954-68. PubMed ID: 3024506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cell culture conditions and passage number on the response of membrane voltage to ATP and angiotensin II in rat mesangial cells.
    Gloy J; Greger R; Schollmeyer P; Huber M; Pavenstädt H
    Ren Physiol Biochem; 1994; 17(2):62-72. PubMed ID: 7513900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redistribution of hepatocyte chloride during L-alanine uptake.
    Wang K; Wondergem R
    J Membr Biol; 1993 Sep; 135(3):237-44. PubMed ID: 8271263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles.
    Chua M; Dulhunty AF
    J Gen Physiol; 1988 May; 91(5):737-57. PubMed ID: 3418320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dichtomy of the membrane potential response of rat soleus muscle fibers to low extracellular potassium concentrations.
    Mølgaard H; Stürup-Johansen M; Flatman JA
    Pflugers Arch; 1980 Jan; 383(2):181-4. PubMed ID: 7189859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unaffected electrogenic Na-K pump activity in "diseased" human atrial fibers, as assessed by intracellular K+ activity.
    Sako H; Imanishi S; Arita M; Shimada T; Hadama T; Uchida Y
    Jpn J Physiol; 1989; 39(6):873-90. PubMed ID: 2561165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hypoxia on rat hippocampal neurones in vitro.
    Fujiwara N; Higashi H; Shimoji K; Yoshimura M
    J Physiol; 1987 Mar; 384():131-51. PubMed ID: 2443657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of sodium pump activity in the hyperpolarization and in subsequent depolarization of smooth muscle in response to stimulation of post-synaptic alpha 1-adrenoceptors.
    Török TL; Vizi ES
    Acta Physiol Acad Sci Hung; 1980; 55(3):233-50. PubMed ID: 6258387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradox response of frog muscle membrane to changes in external potassium.
    Nánási PP; Dankó M
    Pflugers Arch; 1989 Jun; 414(2):157-61. PubMed ID: 2787905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius muscle.
    Standen NB; Stanfield PR
    J Physiol; 1979 Sep; 294():497-520. PubMed ID: 512954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of sodium and potassium permeabilities in the depolarization of denervated rat muscle fibres.
    Kotsias BA; Venosa RA
    J Physiol; 1987 Nov; 392():301-13. PubMed ID: 3446781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle.
    Spalding BC; Senyk O; Swift JG; Horowicz P
    Am J Physiol; 1981 Jul; 241(1):C68-75. PubMed ID: 6972703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres.
    Dulhunty AF
    J Physiol; 1978 Mar; 276():67-82. PubMed ID: 650497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.