These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 20231317)
1. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon}, and GINS in budding yeast. Muramatsu S; Hirai K; Tak YS; Kamimura Y; Araki H Genes Dev; 2010 Mar; 24(6):602-12. PubMed ID: 20231317 [TBL] [Abstract][Full Text] [Related]
2. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Tanaka S; Umemori T; Hirai K; Muramatsu S; Kamimura Y; Araki H Nature; 2007 Jan; 445(7125):328-32. PubMed ID: 17167415 [TBL] [Abstract][Full Text] [Related]
3. Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Araki H Curr Opin Cell Biol; 2010 Dec; 22(6):766-71. PubMed ID: 20728327 [TBL] [Abstract][Full Text] [Related]
4. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Masumoto H; Muramatsu S; Kamimura Y; Araki H Nature; 2002 Feb; 415(6872):651-5. PubMed ID: 11807498 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Zegerman P; Diffley JF Nature; 2007 Jan; 445(7125):281-5. PubMed ID: 17167417 [TBL] [Abstract][Full Text] [Related]
6. Origin single-stranded DNA releases Sld3 protein from the Mcm2-7 complex, allowing the GINS tetramer to bind the Mcm2-7 complex. Bruck I; Kaplan DL J Biol Chem; 2011 May; 286(21):18602-13. PubMed ID: 21460226 [TBL] [Abstract][Full Text] [Related]
7. Enabling association of the GINS protein tetramer with the mini chromosome maintenance (Mcm)2-7 protein complex by phosphorylated Sld2 protein and single-stranded origin DNA. Bruck I; Kanter DM; Kaplan DL J Biol Chem; 2011 Oct; 286(42):36414-26. PubMed ID: 21868389 [TBL] [Abstract][Full Text] [Related]
8. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Takayama Y; Kamimura Y; Okawa M; Muramatsu S; Sugino A; Araki H Genes Dev; 2003 May; 17(9):1153-65. PubMed ID: 12730134 [TBL] [Abstract][Full Text] [Related]
9. Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Tanaka S; Komeda Y; Umemori T; Kubota Y; Takisawa H; Araki H Mol Cell Biol; 2013 Jul; 33(13):2614-22. PubMed ID: 23629628 [TBL] [Abstract][Full Text] [Related]
10. A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. Tak YS; Tanaka Y; Endo S; Kamimura Y; Araki H EMBO J; 2006 May; 25(9):1987-96. PubMed ID: 16619031 [TBL] [Abstract][Full Text] [Related]
11. Dpb11 protein helps control assembly of the Cdc45·Mcm2-7·GINS replication fork helicase. Dhingra N; Bruck I; Smith S; Ning B; Kaplan DL J Biol Chem; 2015 Mar; 290(12):7586-601. PubMed ID: 25659432 [TBL] [Abstract][Full Text] [Related]
12. Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. Yabuuchi H; Yamada Y; Uchida T; Sunathvanichkul T; Nakagawa T; Masukata H EMBO J; 2006 Oct; 25(19):4663-74. PubMed ID: 16990792 [TBL] [Abstract][Full Text] [Related]
13. Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Sengupta S; van Deursen F; de Piccoli G; Labib K Curr Biol; 2013 Apr; 23(7):543-52. PubMed ID: 23499531 [TBL] [Abstract][Full Text] [Related]
14. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Zegerman P; Diffley JF Nature; 2010 Sep; 467(7314):474-8. PubMed ID: 20835227 [TBL] [Abstract][Full Text] [Related]
15. Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Boos D; Sanchez-Pulido L; Rappas M; Pearl LH; Oliver AW; Ponting CP; Diffley JF Curr Biol; 2011 Jul; 21(13):1152-7. PubMed ID: 21700459 [TBL] [Abstract][Full Text] [Related]
16. Regulatory mechanism of the initiation step of DNA replication by CDK in budding yeast. Araki H Biochim Biophys Acta; 2010 Mar; 1804(3):520-3. PubMed ID: 19879979 [TBL] [Abstract][Full Text] [Related]
17. A Positive Amplification Mechanism Involving a Kinase and Replication Initiation Factor Helps Assemble the Replication Fork Helicase. Bruck I; Dhingra N; Kaplan DL J Biol Chem; 2017 Feb; 292(8):3062-3073. PubMed ID: 28082681 [TBL] [Abstract][Full Text] [Related]
19. Helicase activation and establishment of replication forks at chromosomal origins of replication. Tanaka S; Araki H Cold Spring Harb Perspect Biol; 2013 Dec; 5(12):a010371. PubMed ID: 23881938 [TBL] [Abstract][Full Text] [Related]
20. Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Watase G; Takisawa H; Kanemaki MT Curr Biol; 2012 Feb; 22(4):343-9. PubMed ID: 22285032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]