These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 20231867)
1. Confidence intervals for the population mean tailored to small sample sizes, with applications to survey sampling. Rosenblum MA; Laan MJ Int J Biostat; 2009 Jan; 5(1):Article 4. PubMed ID: 20231867 [TBL] [Abstract][Full Text] [Related]
2. Confidence intervals and sample-size calculations for the sisterhood method of estimating maternal mortality. Hanley JA; Hagen CA; Shiferaw T Stud Fam Plann; 1996; 27(4):220-7. PubMed ID: 8875734 [TBL] [Abstract][Full Text] [Related]
3. Confidence intervals for negative binomial random variables of high dispersion. Shilane D; Evans SN; Hubbard AE Int J Biostat; 2010; 6(1):Article 10. PubMed ID: 21969971 [TBL] [Abstract][Full Text] [Related]
4. Confidence intervals based on some weighting functions for the difference of two binomial proportions. Maruo K; Kawai N Stat Med; 2014 Jun; 33(13):2288-96. PubMed ID: 24644149 [TBL] [Abstract][Full Text] [Related]
5. Accuracy in parameter estimation for a general class of effect sizes: A sequential approach. Kelley K; Darku FB; Chattopadhyay B Psychol Methods; 2018 Jun; 23(2):226-243. PubMed ID: 28383948 [TBL] [Abstract][Full Text] [Related]
6. A modified large-sample approach to approximate interval estimation for a particular intraclass correlation coefficient. Cappelleri JC; Ting N Stat Med; 2003 Jun; 22(11):1861-77. PubMed ID: 12754721 [TBL] [Abstract][Full Text] [Related]
7. Constructing Confidence Intervals for Effect Size Measures of an Indirect Effect. Lee S; Lei MK; Brody GH Multivariate Behav Res; 2015; 50(6):600-13. PubMed ID: 26717121 [TBL] [Abstract][Full Text] [Related]
8. A note on effective sample size for constructing confidence intervals for the difference of two proportions. Liu GF Pharm Stat; 2012; 11(2):163-9. PubMed ID: 22337507 [TBL] [Abstract][Full Text] [Related]
9. Interval estimation of the mean response in a log-regression model. Wu J; Wong AC; Wei W Stat Med; 2006 Jun; 25(12):2125-35. PubMed ID: 16220472 [TBL] [Abstract][Full Text] [Related]
10. Statistical properties of methods based on the Q-statistic for constructing a confidence interval for the between-study variance in meta-analysis. van Aert RCM; van Assen MALM; Viechtbauer W Res Synth Methods; 2019 Jun; 10(2):225-239. PubMed ID: 30589219 [TBL] [Abstract][Full Text] [Related]
11. Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Zou GY Stat Med; 2012 Dec; 31(29):3972-81. PubMed ID: 22764084 [TBL] [Abstract][Full Text] [Related]
12. Sampling--how big a sample? Aitken CG J Forensic Sci; 1999 Jul; 44(4):750-60. PubMed ID: 10432610 [TBL] [Abstract][Full Text] [Related]
13. Interval estimation by simulation as an alternative to and extension of confidence intervals. Greenland S Int J Epidemiol; 2004 Dec; 33(6):1389-97. PubMed ID: 15319402 [TBL] [Abstract][Full Text] [Related]
14. Confidence intervals and sample size calculations for the weighted eta-squared effect sizes in one-way heteroscedastic ANOVA. Shieh G Behav Res Methods; 2013 Mar; 45(1):25-37. PubMed ID: 22806705 [TBL] [Abstract][Full Text] [Related]
15. Confidence intervals and sample size calculations for the standardized mean difference effect size between two normal populations under heteroscedasticity. Shieh G Behav Res Methods; 2013 Dec; 45(4):955-67. PubMed ID: 23468180 [TBL] [Abstract][Full Text] [Related]
16. Confidence intervals for the difference between independent binomial proportions: comparison using a graphical approach and moving averages. Laud PJ; Dane A Pharm Stat; 2014; 13(5):294-308. PubMed ID: 25163425 [TBL] [Abstract][Full Text] [Related]
17. Accuracy in parameter estimation for targeted effects in structural equation modeling: sample size planning for narrow confidence intervals. Lai K; Kelley K Psychol Methods; 2011 Jun; 16(2):127-48. PubMed ID: 21417531 [TBL] [Abstract][Full Text] [Related]
19. Confidence intervals for the amount of heterogeneity in meta-analysis. Viechtbauer W Stat Med; 2007 Jan; 26(1):37-52. PubMed ID: 16463355 [TBL] [Abstract][Full Text] [Related]
20. Statistical evaluation of several methods for cut-point determination of immunogenicity screening assay. Shen M; Dong X; Tsong Y J Biopharm Stat; 2015; 25(2):269-79. PubMed ID: 25356783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]