These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 20232153)

  • 1. Numerical modeling of hemodynamics with pulsatile impeller pump support.
    Shi Y; Lawford PV; Hose DR
    Ann Biomed Eng; 2010 Aug; 38(8):2621-34. PubMed ID: 20232153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hemodynamic effect of the support mode for the intra-aorta pump on the cardiovascular system.
    Gao B; Chang Y; Xuan Y; Zeng Y; Liu Y
    Artif Organs; 2013 Feb; 37(2):157-65. PubMed ID: 23379287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility.
    Ando M; Nishimura T; Takewa Y; Yamazaki K; Kyo S; Ono M; Tsukiya T; Mizuno T; Taenaka Y; Tatsumi E
    Artif Organs; 2011 Oct; 35(10):941-7. PubMed ID: 21615427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model.
    Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of cardiovascular dynamics with different types of VAD assistance.
    Shi Y; Korakianitis T; Bowles C
    J Biomech; 2007; 40(13):2919-33. PubMed ID: 17433816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of parameter variations on the hemodynamic response under rotary blood pump assistance.
    Lim E; Dokos S; Salamonsen RF; Rosenfeldt FL; Ayre PJ; Lovell NH
    Artif Organs; 2012 May; 36(5):E125-37. PubMed ID: 22489771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modelling and evaluation of cardiovascular response under pulsatile impeller pump support.
    Shi Y; Brown AG; Lawford PV; Arndt A; Nuesser P; Hose DR
    Interface Focus; 2011 Jun; 1(3):320-37. PubMed ID: 22670203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haemodynamic evaluation of the new pulsatile-flow generation method in vitro.
    Itkin GP; Bychnev AS; Kuleshov AP; Drobyshev AA
    Int J Artif Organs; 2020 Mar; 43(3):157-164. PubMed ID: 31603372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling.
    Bozkurt S; van de Vosse FN; Rutten MC
    Int J Artif Organs; 2014 Oct; 37(10):773-85. PubMed ID: 24970558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute hemodynamic study of Tai-Ta left ventricular assist device in a canine model.
    Shyu JJ; Chou NK; Lee CJ; Chen CF; Shau YW; Wang SS; Chu SH
    Artif Organs; 2004 Dec; 28(12):1095-101. PubMed ID: 15554938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsatile control of rotary blood pumps: Does the modulation waveform matter?
    Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S
    J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of the flow field within the aortic arch during cardiac assist.
    Filipovic N; Schima H
    Artif Organs; 2011 Apr; 35(4):E73-83. PubMed ID: 21554567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic characteristics of a magnetically levitated impeller in a centrifugal blood pump.
    Asama J; Shinshi T; Hoshi H; Takatani S; Shimokohbe A
    Artif Organs; 2007 Apr; 31(4):301-11. PubMed ID: 17437499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low haemolysis pulsatile impeller pump: design concepts and experimental results.
    Qian KX
    J Biomed Eng; 1989 Nov; 11(6):478-81. PubMed ID: 2811347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure.
    Vandenberghe S; Segers P; Antaki JF; Meyns B; Verdonck PR
    ASAIO J; 2005; 51(6):711-8. PubMed ID: 16340355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hemodynamic evaluation of the Medos Deltastream DP1 rotary pump and Jostra HL-20 roller pump under pulsatile and nonpulsatile perfusion in an infant cardiopulmonary bypass model--a pilot study.
    Rider AR; Griffith K; Ressler N; Kunselman AR; Wang S; Undar A
    ASAIO J; 2008; 54(5):529-33. PubMed ID: 18812747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to produce a pulsatile flow with low haemolysis?
    Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li I
    J Med Eng Technol; 2000; 24(5):227-9. PubMed ID: 11204246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.