These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 20232263)
1. Endocardial boundary extraction in left ventricular echocardiographic images using fast and adaptive B-spline snake algorithm. Marsousi M; Eftekhari A; Kocharian A; Alirezaie J Int J Comput Assist Radiol Surg; 2010 Sep; 5(5):501-13. PubMed ID: 20232263 [TBL] [Abstract][Full Text] [Related]
2. Fast and automatic LV mass calculation from echocardiographic images via B-spline snake model and Markov random fields. Marsousi M; Eftekhari A; Alirezaie J; Kocharian A; Sharifahmadian E Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3633-6. PubMed ID: 19964311 [TBL] [Abstract][Full Text] [Related]
3. Image-based clustering and connected component labeling for rapid automated left and right ventricular endocardial volume extraction and segmentation in full cardiac cycle multi-frame MRI images of cardiac patients. Goyal A Med Biol Eng Comput; 2019 Jun; 57(6):1213-1228. PubMed ID: 30690663 [TBL] [Abstract][Full Text] [Related]
4. The clinical utility of automatic boundary detection for the determination of left ventricular volume: a comparison with conventional off-line echocardiographic quantification. Wilson GM; Rahko PS J Am Soc Echocardiogr; 1995; 8(6):822-9. PubMed ID: 8611282 [TBL] [Abstract][Full Text] [Related]
5. Star algorithm: detecting the ultrasonic endocardial boundary automatically. Yao W; Tian J; Zhao B; Chen N; Qian G Ultrasound Med Biol; 2004 Jul; 30(7):943-51. PubMed ID: 15313326 [TBL] [Abstract][Full Text] [Related]
6. Segmenting echocardiography images using B-Spline snake and active ellipse model. Marsousi M; Alirezaie J; Ahmadian A; Kocharian A Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3125-8. PubMed ID: 21095747 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation of right ventricular ultrasound images using sparse matrix transform and a level set. Qin X; Cong Z; Fei B Phys Med Biol; 2013 Nov; 58(21):7609-24. PubMed ID: 24107618 [TBL] [Abstract][Full Text] [Related]
9. Fast and Fully Automatic Left Ventricular Segmentation and Tracking in Echocardiography Using Shape-Based B-Spline Explicit Active Surfaces. Pedrosa J; Queiros S; Bernard O; Engvall J; Edvardsen T; Nagel E; D'hooge J IEEE Trans Med Imaging; 2017 Nov; 36(11):2287-2296. PubMed ID: 28783626 [TBL] [Abstract][Full Text] [Related]
10. Automatic detection of left ventricular borders on electron beam CT sequential cardiac images using an adaptive algorithm. Herment A; Mousseaux E; Dumée P; Decesare A Comput Med Imaging Graph; 1998; 22(4):291-9. PubMed ID: 9840659 [TBL] [Abstract][Full Text] [Related]
11. Automatic cardiac LV boundary detection and tracking using hybrid fuzzy temporal and fuzzy multiscale edge detection. Kamaledin Setarehdan S; Soraghan JJ IEEE Trans Biomed Eng; 1999 Nov; 46(11):1364-78. PubMed ID: 10582422 [TBL] [Abstract][Full Text] [Related]
12. Automatic 3-D segmentation of endocardial border of the left ventricle from ultrasound images. Santiago C; Nascimento JC; Marques JS IEEE J Biomed Health Inform; 2015 Jan; 19(1):339-48. PubMed ID: 25561455 [TBL] [Abstract][Full Text] [Related]
13. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates. Mikić I; Krucinski S; Thomas JD IEEE Trans Med Imaging; 1998 Apr; 17(2):274-84. PubMed ID: 9688159 [TBL] [Abstract][Full Text] [Related]
14. A novel myocardium segmentation approach based on neutrosophic active contour model. Guo Y; Du GQ; Xue JY; Xia R; Wang YH Comput Methods Programs Biomed; 2017 Apr; 142():109-116. PubMed ID: 28325439 [TBL] [Abstract][Full Text] [Related]
15. Quantification of left ventricular function with contrast-enhanced harmonic colour Doppler and a semiautomated boundary detection algorithm in technically difficult patients: feasibility, accuracy, and inter-observer variability. Chen LJ; Colonna P; Cadeddu C; Selem AH; Montisci R; Caiati C; Meloni L; Iliceto S Eur J Echocardiogr; 2001 Dec; 2(4):253-61. PubMed ID: 11888819 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of an automated transthoracic echocardiographic tool for 3D assessment of left heart chamber volumes. Spitzer E; Ren B; Soliman OI; Zijlstra F; Van Mieghem NM; Geleijnse ML Echocardiography; 2017 Feb; 34(2):199-209. PubMed ID: 28240430 [TBL] [Abstract][Full Text] [Related]
17. Endocardial border identification in two-dimensional echocardiographic images: review of methods. Hammoude A Comput Med Imaging Graph; 1998; 22(3):181-93. PubMed ID: 9740036 [TBL] [Abstract][Full Text] [Related]
18. Left ventricle analysis in echocardiographic images using transfer learning. Belfilali H; Bousefsaf F; Messadi M Phys Eng Sci Med; 2022 Dec; 45(4):1123-1138. PubMed ID: 36131173 [TBL] [Abstract][Full Text] [Related]
19. Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles. Angelini ED; Homma S; Pearson G; Holmes JW; Laine AF Ultrasound Med Biol; 2005 Sep; 31(9):1143-58. PubMed ID: 16176781 [TBL] [Abstract][Full Text] [Related]
20. Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram. Zhou SK Med Image Anal; 2010 Aug; 14(4):563-81. PubMed ID: 20494610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]