These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2023232)

  • 1. An electrical analogue for a pressure-controlled, fluid flow generator for arterial blood-flow simulation.
    Janssens JL; Raman ER
    J Med Eng Technol; 1991; 15(1):21-5. PubMed ID: 2023232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.
    Shen H; Zhu Y; Qin KR
    Med Eng Phys; 2016 Dec; 38(12):1439-1448. PubMed ID: 27729198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pressure-controlled fluid flow generator for arterial blood-flow simulation.
    Janssens JL; Raman ER; Vanhuyse VJ
    J Med Eng Technol; 1989; 13(1-2):104-8. PubMed ID: 2733001
    [No Abstract]   [Full Text] [Related]  

  • 4. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation.
    Gaw RL; Cornish BH; Thomas BJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):721-7. PubMed ID: 18270009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.
    Mynard JP; Smolich JJ
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(8):H1026-38. PubMed ID: 26873972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical electrical and hydraulic Windkessel models validate physiological calculations of Windkessel (reservoir) pressure.
    Sridharan SS; Burrowes LM; Bouwmeester JC; Wang JJ; Shrive NG; Tyberg JV
    Can J Physiol Pharmacol; 2012 May; 90(5):579-85. PubMed ID: 22471992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational investigations on the hemodynamic performance of a new swirl generator in bifurcated arteries.
    Prashantha B; Anish S
    Comput Methods Biomech Biomed Engin; 2019 Mar; 22(4):364-375. PubMed ID: 30663338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Numerical simulation of the relationship between blood pressure and blood stream of arteries].
    Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1121-3, 1127. PubMed ID: 16422080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model.
    Bilston LE; Fletcher DF; Brodbelt AR; Stoodley MA
    Comput Methods Biomech Biomed Engin; 2003 Aug; 6(4):235-41. PubMed ID: 12959757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro hemodynamic evaluation of a novel pulsatile extracorporeal life support system: impact of perfusion modes and circuit components on energy loss.
    Wang S; Kunselman AR; Clark JB; Ündar A
    Artif Organs; 2015 Jan; 39(1):59-66. PubMed ID: 25586773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsatile diastolic increase and systolic decrease in arterial blood pressure: their mechanism of production and physiological role.
    Mandoki JJ; Casa-Tirao B; Molina-Guarneros JA; Jiménez-Orozco FA; García-Mondragón MJ; Maldonado-Espinoza A
    Prog Biophys Mol Biol; 2013 Aug; 112(3):55-7. PubMed ID: 23727290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of arterial pulsatile flow and pressure, applying impedance plethysmography to a human arterial model incorporating anatomical branching and scale.
    Semnani R; Smith RE
    Comput Methods Programs Biomed; 1987 Aug; 25(1):13-20. PubMed ID: 3652671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofluid dynamics at arterial bifurcations.
    Lou Z; Yang WJ
    Crit Rev Biomed Eng; 1992; 19(6):455-93. PubMed ID: 1395653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of noninvasive blood pressure measurement.
    Hayashi S; Hayase T; Shirai A; Maruyama M
    J Biomech Eng; 2006 Oct; 128(5):680-7. PubMed ID: 16995754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast blood-flow simulation for large arterial trees containing thousands of vessels.
    Muller A; Clarke R; Ho H
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):160-170. PubMed ID: 27376402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving the hemodynamic inverse problem.
    Quick CM; Berger DS; Stewart RH; Laine GA; Hartley CJ; Noordergraaf A
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):361-8. PubMed ID: 16532762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast estimation of arterial vascular parameters for transient and steady beats with application to hemodynamic state under variant gravitational conditions.
    Essler S; Schroeder MJ; Phaniraj V; Koenig SC; Latham RD; Ewert D
    Ann Biomed Eng; 1999; 27(4):486-97. PubMed ID: 10468233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of pressure and flow propagation in arteries.
    Stergiopulos N; Young DF; Rogge TR
    Biomed Sci Instrum; 1991; 27():93-104. PubMed ID: 2065183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.