BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20232458)

  • 1. Two and three-dimensional gene transfer from enzymatically degradable hydrogel scaffolds.
    Lei Y; Ng QK; Segura T
    Microsc Res Tech; 2010 Sep; 73(9):910-7. PubMed ID: 20232458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells.
    Lei Y; Segura T
    Biomaterials; 2009 Jan; 30(2):254-65. PubMed ID: 18838159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels.
    Moeinzadeh S; Barati D; He X; Jabbari E
    Biomacromolecules; 2012 Jul; 13(7):2073-86. PubMed ID: 22642902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft.
    Zhang J; Qi H; Wang H; Hu P; Ou L; Guo S; Li J; Che Y; Yu Y; Kong D
    Artif Organs; 2006 Dec; 30(12):898-905. PubMed ID: 17181830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model.
    Lim CT; Ren X; Afizah MH; Tarigan-Panjaitan S; Yang Z; Wu Y; Chian KS; Mikos AG; Hui JH
    Tissue Eng Part A; 2013 Aug; 19(15-16):1852-61. PubMed ID: 23517496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering.
    Yu HS; Jin GZ; Won JE; Wall I; Kim HW
    J Biomed Mater Res A; 2012 Sep; 100(9):2431-40. PubMed ID: 22566478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds.
    Raftery RM; Tierney EG; Curtin CM; Cryan SA; O'Brien FJ
    J Control Release; 2015 Jul; 210():84-94. PubMed ID: 25982680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-viral vector delivery from PEG-hyaluronic acid hydrogels.
    Wieland JA; Houchin-Ray TL; Shea LD
    J Control Release; 2007 Jul; 120(3):233-41. PubMed ID: 17582640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells.
    He X; Jabbari E
    Biomacromolecules; 2007 Mar; 8(3):780-92. PubMed ID: 17295540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs.
    Lee HJ; Koh WG
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9338-48. PubMed ID: 24915062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular responses to degradable cyclic acetal modified PEG hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    J Biomed Mater Res A; 2009 Sep; 90(3):863-73. PubMed ID: 18615467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of cell-loading methods in hydrogel systems.
    Ma J; Yang F; Both SK; Kersten-Niessen M; Bongio M; Pan J; Cui FZ; Kasper FK; Mikos AG; Jansen JA; van den Beucken JJ
    J Biomed Mater Res A; 2014 Apr; 102(4):935-46. PubMed ID: 23650286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering.
    Naderi-Meshkin H; Andreas K; Matin MM; Sittinger M; Bidkhori HR; Ahmadiankia N; Bahrami AR; Ringe J
    Cell Biol Int; 2014 Jan; 38(1):72-84. PubMed ID: 24108671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic crosslinked in situ-forming in vivo scaffold for rat bone marrow mesenchymal stem cells.
    Kim KS; Lee JY; Kang YM; Kim ES; Lee B; Chun HJ; Kim JH; Min BH; Lee HB; Kim MS
    Tissue Eng Part A; 2009 Oct; 15(10):3201-9. PubMed ID: 19366343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of centrifugal seeding method in improving cells distribution and proliferation on demineralized cancellous bone scaffolds for tissue-engineered meniscus.
    Zhang ZZ; Jiang D; Wang SJ; Qi YS; Zhang JY; Yu JK
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15294-302. PubMed ID: 26102091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells.
    Raic A; Rödling L; Kalbacher H; Lee-Thedieck C
    Biomaterials; 2014 Jan; 35(3):929-40. PubMed ID: 24176196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel.
    Li Z; Guo X; Palmer AF; Das H; Guan J
    Acta Biomater; 2012 Oct; 8(10):3586-95. PubMed ID: 22729021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel poly(ethylene imine) biscarbamate conjugate as an efficient and nontoxic gene delivery system.
    Xu S; Chen M; Yao Y; Zhang Z; Jin T; Huang Y; Zhu H
    J Control Release; 2008 Aug; 130(1):64-8. PubMed ID: 18582980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luciferase labeling for multipotent stromal cell tracking in spinal fusion versus ectopic bone tissue engineering in mice and rats.
    Geuze RE; Prins HJ; Öner FC; van der Helm YJ; Schuijff LS; Martens AC; Kruyt MC; Alblas J; Dhert WJ
    Tissue Eng Part A; 2010 Nov; 16(11):3343-51. PubMed ID: 20575656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.