These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20232461)

  • 1. Rationalized approach to the determination of contact point in force-distance curves: application to polymer brushes in salt solutions and in water.
    Melzak KA; Moreno-Flores S; Yu K; Kizhakkedathu J; Toca-Herrera JL
    Microsc Res Tech; 2010 Oct; 73(10):959-64. PubMed ID: 20232461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact mechanics and tip shape in AFM-based nanomechanical measurements.
    Kopycinska-Müller M; Geiss RH; Hurley DC
    Ultramicroscopy; 2006 Apr; 106(6):466-74. PubMed ID: 16448755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction forces between microsized silica particles and weak polyelectrolyte brushes at varying pH and salt concentration.
    Drechsler A; Synytska A; Uhlmann P; Elmahdy MM; Stamm M; Kremer F
    Langmuir; 2010 May; 26(9):6400-10. PubMed ID: 20038115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point.
    Crick SL; Yin FC
    Biomech Model Mechanobiol; 2007 Apr; 6(3):199-210. PubMed ID: 16775736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for measuring the intrinsic nanoscale thickness of polymer brushes by means of atomic force microscopy: application of a compressible fluid model.
    Cuellar JL; Llarena I; Iturri JJ; Donath E; Moya SE
    Nanoscale; 2013 Dec; 5(23):11679-85. PubMed ID: 24101034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442.
    Abu-Lail NI; Camesano TA
    Biomacromolecules; 2003; 4(4):1000-12. PubMed ID: 12857085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to quantitatively evaluate the Hamaker constant using the jump-into-contact effect in atomic force microscopy.
    Das S; Sreeram PA; Raychaudhuri AK
    Nanotechnology; 2007 Jan; 18(3):035501. PubMed ID: 19636120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction forces between silica surfaces in aqueous solutions of cationic polymeric flocculants: effect of polymer charge.
    Zhou Y; Gan Y; Wanless EJ; Jameson GJ; Franks GV
    Langmuir; 2008 Oct; 24(19):10920-8. PubMed ID: 18729484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct comparison of atomic force microscopic and total internal reflection microscopic measurements in the presence of nonadsorbing polyelectrolytes.
    Biggs S; Prieve DC; Dagastine RR
    Langmuir; 2005 Jun; 21(12):5421-8. PubMed ID: 15924471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of adhesion on the contact radius in atomic force microscopy indentation.
    Sirghi L; Rossi F
    Nanotechnology; 2009 Sep; 20(36):365702. PubMed ID: 19687552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative method to determining optical lever sensitivity in atomic force microscopy without tip-sample contact.
    Tourek CJ; Sundararajan S
    Rev Sci Instrum; 2010 Jul; 81(7):073711. PubMed ID: 20687735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the adhesion between fine particles and nanocontacts: an atomic force microscope study.
    Farshchi-Tabrizi M; Kappl M; Cheng Y; Gutmann J; Butt HJ
    Langmuir; 2006 Feb; 22(5):2171-84. PubMed ID: 16489804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical force titration of plasma polymer-modified PDMS substrates by using plasma polymer-modified AFM tips.
    Geissler A; Vallat MF; Vidal L; Voegel JC; Hemmerlé J; Schaaf P; Roucoules V
    Langmuir; 2008 May; 24(9):4874-80. PubMed ID: 18380509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative control approach to high-speed force-distance curve measurement using AFM: time-dependent response of PDMS example.
    Kim KS; Lin Z; Shrotriya P; Sundararajan S; Zou Q
    Ultramicroscopy; 2008 Aug; 108(9):911-20. PubMed ID: 18467033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of bacterial adhesion using a gradient force analysis method and colloid probe atomic force microscopy.
    Li X; Logan BE
    Langmuir; 2004 Sep; 20(20):8817-22. PubMed ID: 15379512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoelectric point of fluorite by direct force measurements using atomic force microscopy.
    Assemi S; Nalaskowski J; Miller JD; Johnson WP
    Langmuir; 2006 Feb; 22(4):1403-5. PubMed ID: 16460053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves.
    Ebenstein DM; Wahl KJ
    J Colloid Interface Sci; 2006 Jun; 298(2):652-62. PubMed ID: 16455101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.