BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20232681)

  • 1. Optimization of UV-promoted peroxydisulphate oxidation of C.I. Basic Blue 3 using response surface methodology.
    Khataee AR
    Environ Technol; 2010 Jan; 31(1):73-86. PubMed ID: 20232681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification.
    Khataee AR; Fathinia M; Aber S; Zarei M
    J Hazard Mater; 2010 Sep; 181(1-3):886-97. PubMed ID: 20566244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of organic dyes by UV/H2O2 process: modelling and optimization.
    Kasiri MB; Khataee AR
    Environ Technol; 2012 Jun; 33(10-12):1417-25. PubMed ID: 22856317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evaluation of electrical energy per order (E(Eo)) for photooxidative decolorization of four textile dye solutions by the kinetic model.
    Daneshvar N; Aleboyeh A; Khataee AR
    Chemosphere; 2005 May; 59(6):761-7. PubMed ID: 15811404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: artificial neural network modelling.
    Khataee AR
    Environ Technol; 2009 Oct; 30(11):1155-68. PubMed ID: 19947146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photooxidative removal of the herbicide Acid Blue 9 in the presence of hydrogen peroxide: modeling of the reaction for evaluation of electrical energy per order (E EO).
    Khataee AR; Khataee HR
    J Environ Sci Health B; 2008 Sep; 43(7):562-8. PubMed ID: 18803110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The photooxidative destruction of C.I. Basic Yellow 2 using UV/S2O8(2-) process in a rectangular continuous photoreactor.
    Salari D; Niaei A; Aber S; Rasoulifard MH
    J Hazard Mater; 2009 Jul; 166(1):61-6. PubMed ID: 19128877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process.
    Shu HY; Chang MC
    J Hazard Mater; 2005 Oct; 125(1-3):96-101. PubMed ID: 15982808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Box-Wilson experimental design method for the photodegradation of bakery's yeast industry with UV/H2O2 and UV/H2O2/Fe(II) process.
    Catalkaya EC; Sengül F
    J Hazard Mater; 2006 Feb; 128(2-3):201-7. PubMed ID: 16162392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of photocatalytic degradation of sulphonated diazo dye C.I. Reactive Green 19 using ceramic-coated TiO2 nanoparticles.
    Rastegar M; Shadbad KR; Khataee AR; Pourrajab R
    Environ Technol; 2012; 33(7-9):995-1003. PubMed ID: 22720426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters.
    Daneshvar N; Oladegaragoze A; Djafarzadeh N
    J Hazard Mater; 2006 Feb; 129(1-3):116-22. PubMed ID: 16203084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study.
    Khataee AR; Vatanpour V; Amani Ghadim AR
    J Hazard Mater; 2009 Jan; 161(2-3):1225-33. PubMed ID: 18524478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H2O2 process.
    Zuorro A; Fidaleo M; Lavecchia R
    J Environ Manage; 2013 Sep; 127():28-35. PubMed ID: 23676376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters.
    Shu HY; Chang MC; Fan HJ
    J Hazard Mater; 2004 Sep; 113(1-3):201-8. PubMed ID: 15363532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The photo-oxidative destruction of C.I. Basic Yellow 2 using UV/S(2)O(8)(2-) process in an annular photoreactor.
    Salari D; Daneshvar N; Niaei A; Aber S; Rasoulifard MH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 May; 43(6):657-63. PubMed ID: 18393075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photolytic decolorization of Rose Bengal by UV/H(2)O(2) and data optimization using response surface method.
    Rauf MA; Marzouki N; Körbahti BK
    J Hazard Mater; 2008 Nov; 159(2-3):602-9. PubMed ID: 18395977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor.
    Nishio J; Tokumura M; Znad HT; Kawase Y
    J Hazard Mater; 2006 Nov; 138(1):106-15. PubMed ID: 16806676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction.
    Tokumura M; Ohta A; Znad HT; Kawase Y
    Water Res; 2006 Dec; 40(20):3775-84. PubMed ID: 17028064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemometrics approach for determination and optimization of simultaneous photooxidative decolourization of a mixture of three textile dyes.
    Khataee AR; Naseri A; Zarei M; Safarpour M; Moradkhannejhad L
    Environ Technol; 2012; 33(19-21):2305-17. PubMed ID: 23393972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation.
    Song S; Yao J; He Z; Qiu J; Chen J
    J Hazard Mater; 2008 Mar; 152(1):204-10. PubMed ID: 17686576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.