These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 20232840)
1. Adsorption and aggregation characteristics of silver nanoparticles onto a poly(4-vinylpyridine) film: a comparison with gold nanoparticles. Kim K; Ryoo H; Shin KS Langmuir; 2010 Jul; 26(13):10827-32. PubMed ID: 20232840 [TBL] [Abstract][Full Text] [Related]
2. In situ Raman monitoring of competitive adsorption of Ag and Au nanoparticles onto a poly(4-vinyl pyridine) surface. Kim K; Ryoo H; Shin KS Appl Spectrosc; 2011 Jan; 65(1):60-5. PubMed ID: 21211155 [TBL] [Abstract][Full Text] [Related]
3. Adsorption characteristics of Au nanoparticles onto poly(4-vinylpyridine) surface revealed by QCM, AFM, UV/vis, and Raman scattering spectroscopy. Kim K; Ryoo H; Lee YM; Shin KS J Colloid Interface Sci; 2010 Feb; 342(2):479-84. PubMed ID: 19919863 [TBL] [Abstract][Full Text] [Related]
4. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. Kim K; Lee HS J Phys Chem B; 2005 Oct; 109(40):18929-34. PubMed ID: 16853437 [TBL] [Abstract][Full Text] [Related]
5. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K; Choi JY; Lee HB; Shin KS J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550 [TBL] [Abstract][Full Text] [Related]
6. Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate. Kim K; Yoon JK J Phys Chem B; 2005 Nov; 109(44):20731-6. PubMed ID: 16853687 [TBL] [Abstract][Full Text] [Related]
7. Novel method for preparing controllable and stable silver particle films for surface-enhanced Raman scattering spectroscopy. Li X; Xu W; Jia H; Wang X; Zhao B; Li B; Ozaki Y Appl Spectrosc; 2004 Jan; 58(1):26-32. PubMed ID: 14727717 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic analysis of L-histidine adsorbed on gold and silver nanoparticle surfaces investigated by surface-enhanced Raman scattering. Lim JK; Kim Y; Lee SY; Joo SW Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan; 69(1):286-9. PubMed ID: 17572135 [TBL] [Abstract][Full Text] [Related]
9. Electromagnetic field enhancement in the gap between two Au nanoparticles: the size of hot site probed by surface-enhanced Raman scattering. Kim K; Shin D; Kim KL; Shin KS Phys Chem Chem Phys; 2010 Apr; 12(15):3747-52. PubMed ID: 20358069 [TBL] [Abstract][Full Text] [Related]
10. Interfacial entrapment of noble metal nanoparticles and nanorods capped with amphiphilic multiblock copolymer at a selective liquid-liquid interface. Du B; Chen X; Zhao B; Mei A; Wang Q; Xu J; Fan Z Nanoscale; 2010 Sep; 2(9):1684-9. PubMed ID: 20689876 [TBL] [Abstract][Full Text] [Related]
11. A novel and universal route to SiO2-supported organic/inorganic hybrid noble metal nanomaterials via surface RAFT polymerization. Liu J; Zhang L; Shi S; Chen S; Zhou N; Zhang Z; Cheng Z; Zhu X Langmuir; 2010 Sep; 26(18):14806-13. PubMed ID: 20795688 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability. Fan M; Brolo AG Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901 [TBL] [Abstract][Full Text] [Related]
13. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Fan M; Brolo AG Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709 [TBL] [Abstract][Full Text] [Related]
14. Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules. Güzel R; Ustündağ Z; Ekşi H; Keskin S; Taner B; Durgun ZG; Turan AA; Solak AO J Colloid Interface Sci; 2010 Nov; 351(1):35-42. PubMed ID: 20701922 [TBL] [Abstract][Full Text] [Related]
15. [Surface-enhanced Raman spectroscopic studies on the thiophenol adsorbed on novel Ag-Au alloy nanoparticles]. Wang M; Yao JL; Gu RA Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1136-9. PubMed ID: 17763776 [TBL] [Abstract][Full Text] [Related]
17. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Narayanan R; Lipert RJ; Porter MD Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676 [TBL] [Abstract][Full Text] [Related]
18. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone). Pinkhasova P; Yang L; Zhang Y; Sukhishvili S; Du H Langmuir; 2012 Feb; 28(5):2529-35. PubMed ID: 22225536 [TBL] [Abstract][Full Text] [Related]
19. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths. Rycenga M; Hou KK; Cobley CM; Schwartz AG; Camargo PH; Xia Y Phys Chem Chem Phys; 2009 Jul; 11(28):5903-8. PubMed ID: 19588011 [TBL] [Abstract][Full Text] [Related]
20. Surface enhanced Raman scattering investigation of the halide anion effect on the adsorption of 1,2,3-triazole on silver and gold colloidal nanoparticles. Pergolese B; Muniz-Miranda M; Bigotto A J Phys Chem B; 2005 May; 109(19):9665-71. PubMed ID: 16852164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]