These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20232843)

  • 1. Tuning magnetism in zigzag ZnO nanoribbons by transverse electric fields.
    Kou L; Li C; Zhang Z; Guo W
    ACS Nano; 2010 Apr; 4(4):2124-8. PubMed ID: 20232843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating the bandgaps of graphdiyne nanoribbons by transverse electric fields.
    Kang J; Wu F; Li J
    J Phys Condens Matter; 2012 Apr; 24(16):165301. PubMed ID: 22447843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons.
    Kou L; Tang C; Zhang Y; Heine T; Chen C; Frauenheim T
    J Phys Chem Lett; 2012 Oct; 3(20):2934-41. PubMed ID: 26292229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible, opto-mechanically induced spin-switching in a nanoribbon-spiropyran hybrid material.
    Wong BM; Ye SH; O'Bryan G
    Nanoscale; 2012 Feb; 4(4):1321-7. PubMed ID: 22228399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First principles study of magnetism in nanographenes.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Sep; 127(12):124703. PubMed ID: 17902927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bandgap tuning in armchair MoS2 nanoribbon.
    Yue Q; Chang S; Kang J; Zhang X; Shao Z; Qin S; Li J
    J Phys Condens Matter; 2012 Aug; 24(33):335501. PubMed ID: 22813480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structures of SiC nanoribbons.
    Sun L; Li Y; Li Z; Li Q; Zhou Z; Chen Z; Yang J; Hou JG
    J Chem Phys; 2008 Nov; 129(17):174114. PubMed ID: 19045340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic and electronic properties of α-graphyne nanoribbons.
    Yue Q; Chang S; Kang J; Tan J; Qin S; Li J
    J Chem Phys; 2012 Jun; 136(24):244702. PubMed ID: 22755594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening effects on the field enhancement factor of zigzag graphene nanoribbon arrays: a first-principles study.
    Hu H; Lin TC; Leung TC; Su WS
    Phys Chem Chem Phys; 2018 May; 20(21):14627-14634. PubMed ID: 29770396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study.
    Liang Y; Wang V; Mizuseki H; Kawazoe Y
    J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum effect enhanced magnetism of C-doped phosphorene nanoribbons: first-principles calculations.
    Cai X; Niu C; He YY; Wang J; Zhu Z; Zhang L; Jia Y
    Phys Chem Chem Phys; 2017 Oct; 19(41):28354-28359. PubMed ID: 29034945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally driven spin transport through a transverse-biased zigzag-edge graphene nanoribbon.
    Zhao Z; Zhai X; Jin G
    J Phys Condens Matter; 2012 Mar; 24(9):095302. PubMed ID: 22316566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A first-principles study on zigzag phosphorene nanoribbons passivated by iron-group atoms.
    Chen N; Wang Y; Mu Y; Fan Y; Li SD
    Phys Chem Chem Phys; 2017 Sep; 19(37):25441-25445. PubMed ID: 28900647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.
    Huang LF; Zhang GR; Zheng XH; Gong PL; Cao TF; Zeng Z
    J Phys Condens Matter; 2013 Feb; 25(5):055304. PubMed ID: 23300171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic response of zigzag nanoribbons under electric fields.
    Culchac FJ; Capaz RB; Costa AT; Latgé A
    J Phys Condens Matter; 2014 May; 26(21):216002. PubMed ID: 24806106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The optical conductivity of bilayer zigzag-edge graphene nanoribbons with external transverse electric fields.
    Zhu WH; Liu ZZ; Ding GH
    J Phys Condens Matter; 2012 Sep; 24(35):355302. PubMed ID: 22885614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and magneto-electronic properties and electric field-mediated effects for transition metal-terminated zigzag h-BN nanoribbons.
    Liu J; Zhang ZH; Yuan PF; Fan ZQ
    Phys Chem Chem Phys; 2017 Feb; 19(6):4469-4477. PubMed ID: 28120954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.