BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 202330)

  • 21. Nuclear magnetic resonance studies in hemoproteins. IX. pH dependent features of horse heart ferric cytochrome c.
    Morishima I; Ogawa S; Yonezawa T; Iizuka T
    Biochim Biophys Acta; 1977 Dec; 495(2):287-98. PubMed ID: 22354
    [No Abstract]   [Full Text] [Related]  

  • 22. Natural abundance 13C-NMR study of paramagnetic horse heart ferricytochrome c cyanide complex: assignment of hyperfine shifted heme methyl carbon resonances.
    Yamamoto Y; Nanai N; Inoue Y; Chûjô R
    Biochem Biophys Res Commun; 1988 Feb; 151(1):262-9. PubMed ID: 2831882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral properties of nitric oxide complex of cytochrome c' from Rhodopseudomonas capsulata B100.
    Yoshimura T; Suzuki S; Iwasaki H; Takakuwa S
    Biochem Biophys Res Commun; 1987 Jun; 145(2):868-75. PubMed ID: 3036144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assignment of paramagnetically shifted resonances in the 1H NMR spectrum of horse ferricytochrome c.
    Feng YQ; Roder H; Englander SW
    Biophys J; 1990 Jan; 57(1):15-22. PubMed ID: 2153419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton NMR study of myoglobin reconstituted with 3, 7-diethyl-2, 8-dimethyl iron porphyrin: remarkable influence of peripheral substitution on heme rotation.
    Juillard S; Bondon A; Simonneaux G
    J Inorg Biochem; 2006 Sep; 100(9):1441-8. PubMed ID: 16766034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton magnetic resonance studies of horse cytochrome c.
    McDonald CC; Phillips WD
    Biochemistry; 1973 Aug; 12(17):3170-86. PubMed ID: 4354605
    [No Abstract]   [Full Text] [Related]  

  • 27. Letter: Nuclear magnetic resonance studies of hemoproteins. Restricted rotation of a heme side chain methyl group in some ferric myoglobin complexes and its implication in van der Waals contact in the heme side chain environments.
    Morishima I; Iizuka T
    J Am Chem Soc; 1974 Nov; 96(23):7365-7. PubMed ID: 4427060
    [No Abstract]   [Full Text] [Related]  

  • 28. Azide, cyanide, fluoride, imidazole and pyridine binding to ferric and ferrous native horse heart cytochrome c and to its carboxymethylated derivative: a comparative study.
    Viola F; Aime S; Coletta M; Desideri A; Fasano M; Paoletti S; Tarricone C; Ascenzi P
    J Inorg Biochem; 1996 May; 62(3):213-22. PubMed ID: 8627283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ENDOR from nitrogens and protons in low spin ferric heme and hemoprotein.
    Scholes CP; Van Camp HL
    Biochim Biophys Acta; 1976 May; 434(1):290-5. PubMed ID: 181067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of heme axial ligands of cytochrome c' from Alcaligenes sp. N.C.I.B. 11015.
    Yoshimura T; Suzuki S; Nakahara A; Iwasaki H; Masuko M; Matsubara T
    Biochim Biophys Acta; 1985 Oct; 831(3):267-74. PubMed ID: 2996606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unique heme environment at the putative distal region of hydrogen peroxide-dependent fatty acid alpha-hydroxylase from Sphingomonas paucimobilis (peroxygenase P450(SPalpha).
    Imai Y; Matsunaga I; Kusunose E; Ichihara K
    J Biochem; 2000 Aug; 128(2):189-94. PubMed ID: 10920253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding of 1-methylimidazole to cytochrome c: kinetic analysis and resonance assignments by two-dimensional NMR.
    Shao W; Liu G; Tang W
    Biochim Biophys Acta; 1995 Apr; 1248(2):177-85. PubMed ID: 7748900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon-13 nuclear magnetic resonance of heme carbonyls. Cytochrome c and carboxymethyl derivatives of cytochrome c.
    Morgan LO; Eakin RT; Vergamimi PJ; Matwiyoff NA
    Biochemistry; 1976 May; 15(10):2203-7. PubMed ID: 6042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic properties of ferrous heme complexes of sterically hindered ligands.
    Wagner GC; Kassner RJ
    Biochim Biophys Acta; 1975 Jun; 392(2):319-27. PubMed ID: 165836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton NMR study of methemoglobin and its isolated chains. Effect of the subunit association on the structure of the subunits.
    Neya S; Morishima I
    J Biol Chem; 1979 Sep; 254(18):9107-12. PubMed ID: 479181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation.
    Sigman JA; Pond AE; Dawson JH; Lu Y
    Biochemistry; 1999 Aug; 38(34):11122-9. PubMed ID: 10460168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assignment of hyperfine-shifted resonances in yeast ferricytochrome c isozyme 2 using the proton pre-steady-state nuclear Overhauser effect.
    Satterlee JD; Avizonis DZ; Moench SJ
    Biochim Biophys Acta; 1988 Feb; 952(3):317-24. PubMed ID: 2827781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of cytochrome C redox potential: axial ligation and protein environment effects.
    Battistuzzi G; Borsari M; Cowan JA; Ranieri A; Sola M
    J Am Chem Soc; 2002 May; 124(19):5315-24. PubMed ID: 11996572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1H NMR studies of azide binding to cytochrome c.
    Ma D; Lu J; Tang W
    Biochim Biophys Acta; 1998 Apr; 1384(1):32-42. PubMed ID: 9602041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.