These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20233088)

  • 21. The pathology of multiple sclerosis.
    Sobel RA
    Neurol Clin; 1995 Feb; 13(1):1-21. PubMed ID: 7739499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis.
    Noorbakhsh F; Tsutsui S; Vergnolle N; Boven LA; Shariat N; Vodjgani M; Warren KG; Andrade-Gordon P; Hollenberg MD; Power C
    J Exp Med; 2006 Feb; 203(2):425-35. PubMed ID: 16476770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. T-cells in multiple sclerosis.
    Severson C; Hafler DA
    Results Probl Cell Differ; 2010; 51():75-98. PubMed ID: 19582415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis.
    Centonze D; Muzio L; Rossi S; Furlan R; Bernardi G; Martino G
    Cell Death Differ; 2010 Jul; 17(7):1083-91. PubMed ID: 19927157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathogenesis of axonal and neuronal damage in multiple sclerosis.
    Dutta R; Trapp BD
    Neurology; 2007 May; 68(22 Suppl 3):S22-31; discussion S43-54. PubMed ID: 17548565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis.
    Mirshafiey A; Jadidi-Niaragh F
    Immunopharmacol Immunotoxicol; 2010 Jun; 32(2):219-27. PubMed ID: 20298145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Positive and negative implications of tumor necrosis factor neutralization for the pathogenesis of multiple sclerosis.
    Taoufik E; Tseveleki V; Euagelidou M; Emmanouil M; Voulgari-Kokota A; Haralambous S; Probert L
    Neurodegener Dis; 2008; 5(1):32-7. PubMed ID: 18075273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meningeal inflammation is not associated with cortical demyelination in chronic multiple sclerosis.
    Kooi EJ; Geurts JJ; van Horssen J; Bø L; van der Valk P
    J Neuropathol Exp Neurol; 2009 Sep; 68(9):1021-8. PubMed ID: 19680141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immune and inflammatory mechanisms in neuropathic pain.
    Moalem G; Tracey DJ
    Brain Res Rev; 2006 Aug; 51(2):240-64. PubMed ID: 16388853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Recent prognosis on etiology and pathophysiology of multiple sclerosis].
    Niino M
    Nihon Rinsho; 2013 May; 71(5):807-10. PubMed ID: 23777086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prostaglandins and chronic inflammation.
    Aoki T; Narumiya S
    Trends Pharmacol Sci; 2012 Jun; 33(6):304-11. PubMed ID: 22464140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prostaglandins and rheumatoid arthritis.
    Fattahi MJ; Mirshafiey A
    Arthritis; 2012; 2012():239310. PubMed ID: 23193470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholinergic System and Neuroinflammation: Implication in Multiple Sclerosis.
    Di Bari M; Di Pinto G; Reale M; Mengod G; Tata AM
    Cent Nerv Syst Agents Med Chem; 2017; 17(2):109-115. PubMed ID: 27550615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of prostaglandin activity, part 1: prostaglandin inhibition in the management of nonrheumatologic diseases: immunologic and hematologic aspects.
    Al-Waili NS; Saloom KY; Al-Waili T; Al-Waili A; Al-Waili H
    Adv Ther; 2007; 24(1):189-222. PubMed ID: 17526477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Positive and negative effects of prostaglandins in Alzheimer's disease.
    Fattahi MJ; Mirshafiey A
    Psychiatry Clin Neurosci; 2014 Jan; 68(1):50-60. PubMed ID: 23992456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Prostaglandins in Multiple Sclerosis.
    Gulla S; Lomada D; Lade A; Pallu R; Reddy MC
    Curr Pharm Des; 2020; 26(7):730-742. PubMed ID: 31914903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Role of Distinct Subsets of Macrophages in the Pathogenesis of MS and the Impact of Different Therapeutic Agents on These Populations.
    Radandish M; Khalilian P; Esmaeil N
    Front Immunol; 2021; 12():667705. PubMed ID: 34489926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acquired channelopathies as contributors to development and progression of multiple sclerosis.
    Schattling B; Eggert B; Friese MA
    Exp Neurol; 2014 Dec; 262 Pt A():28-36. PubMed ID: 24656770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A basic overview of multiple sclerosis immunopathology.
    Grigoriadis N; van Pesch V;
    Eur J Neurol; 2015 Oct; 22 Suppl 2():3-13. PubMed ID: 26374508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting P2X4 and P2X7 receptors in multiple sclerosis.
    Domercq M; Matute C
    Curr Opin Pharmacol; 2019 Aug; 47():119-125. PubMed ID: 31015145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.