BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20233307)

  • 1. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts.
    Morgan RL; Zhou H; Lehto E; Nguyen N; Bains A; Wang X; Ma W
    Mol Microbiol; 2010 Apr; 76(2):437-55. PubMed ID: 20233307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems.
    Zhou H; Morgan RL; Guttman DS; Ma W
    Mol Plant Microbe Interact; 2009 Feb; 22(2):176-89. PubMed ID: 19132870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function.
    Nimchuk ZL; Fisher EJ; Desveaux D; Chang JH; Dangl JL
    Mol Plant Microbe Interact; 2007 Apr; 20(4):346-57. PubMed ID: 17427805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean.
    Zhou H; Lin J; Johnson A; Morgan RL; Zhong W; Ma W
    Cell Host Microbe; 2011 Mar; 9(3):177-186. PubMed ID: 21402357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein.
    Lewis JD; Wu R; Guttman DS; Desveaux D
    PLoS Genet; 2010 Apr; 6(4):e1000894. PubMed ID: 20368970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race.
    Ma W; Dong FF; Stavrinides J; Guttman DS
    PLoS Genet; 2006 Dec; 2(12):e209. PubMed ID: 17194219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying
    Lee AH; Bastedo DP; Youn JY; Lo T; Middleton MA; Kireeva I; Lee JY; Sharifpoor S; Baryshnikova A; Zhang J; Wang PW; Peisajovich SG; Constanzo M; Andrews BJ; Boone CM; Desveaux D; Guttman DS
    G3 (Bethesda); 2019 Feb; 9(2):535-547. PubMed ID: 30573466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity.
    Engelhardt S; Lee J; Gäbler Y; Kemmerling B; Haapalainen ML; Li CM; Wei Z; Keller H; Joosten M; Taira S; Nürnberger T
    Plant J; 2009 Feb; 57(4):706-17. PubMed ID: 18980650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The VirPphA/AvrPtoB family of type III effectors in Pseudomonas syringae.
    Oguiza JA; Asensio AC
    Res Microbiol; 2005 Apr; 156(3):298-303. PubMed ID: 15808932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana.
    Lewis JD; Abada W; Ma W; Guttman DS; Desveaux D
    J Bacteriol; 2008 Apr; 190(8):2880-91. PubMed ID: 18263728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host-pathogen interplay and the evolution of bacterial effectors.
    Stavrinides J; McCann HC; Guttman DS
    Cell Microbiol; 2008 Feb; 10(2):285-92. PubMed ID: 18034865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants.
    Pitman AR; Jackson RW; Mansfield JW; Kaitell V; Thwaites R; Arnold DL
    Curr Biol; 2005 Dec; 15(24):2230-5. PubMed ID: 16360685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25.
    Vinatzer BA; Jelenska J; Greenberg JT
    Mol Plant Microbe Interact; 2005 Aug; 18(8):877-88. PubMed ID: 16134900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor.
    Ma KW; Jiang S; Hawara E; Lee D; Pan S; Coaker G; Song J; Ma W
    New Phytol; 2015 Dec; 208(4):1157-68. PubMed ID: 26103463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversifying selection drives the evolution of the type III secretion system pilus of Pseudomonas syringae.
    Guttman DS; Gropp SJ; Morgan RL; Wang PW
    Mol Biol Evol; 2006 Dec; 23(12):2342-54. PubMed ID: 16950758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity.
    Espinosa A; Alfano JR
    Cell Microbiol; 2004 Nov; 6(11):1027-40. PubMed ID: 15469432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AlgW regulates multiple Pseudomonas syringae virulence strategies.
    Schreiber KJ; Desveaux D
    Mol Microbiol; 2011 Apr; 80(2):364-77. PubMed ID: 21306444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors.
    Jiang S; Yao J; Ma KW; Zhou H; Song J; He SY; Ma W
    PLoS Pathog; 2013 Oct; 9(10):e1003715. PubMed ID: 24204266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Erwinia chrysanthemi EC16 hrp/hrc gene cluster encodes an active Hrp type III secretion system that is flanked by virulence genes functionally unrelated to the Hrp system.
    Rojas CM; Ham JH; Schechter LM; Kim JF; Beer SV; Collmer A
    Mol Plant Microbe Interact; 2004 Jun; 17(6):644-53. PubMed ID: 15195947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1.
    Kunkeaw S; Tan S; Coaker G
    Mol Plant Microbe Interact; 2010 Apr; 23(4):415-24. PubMed ID: 20192829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.