These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 20233438)
1. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. Cunha MM; Franzen AJ; Seabra SH; Herbst MH; Vugman NV; Borba LP; de Souza W; Rozental S BMC Microbiol; 2010 Mar; 10():80. PubMed ID: 20233438 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of Fonsecaea pedrosoi against mouse macrophages. Cunha MM; Franzen AJ; Alviano DS; Zanardi E; Alviano CS; De Souza W; Rozental S Microsc Res Tech; 2005 Dec; 68(6):377-84. PubMed ID: 16358282 [TBL] [Abstract][Full Text] [Related]
3. Effects of tricyclazole (5-methyl-1,2,4-triazol[3,4] benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells. Franzen AJ; Cunha MM; Batista EJ; Seabra SH; De Souza W; Rozental S Microsc Res Tech; 2006 Sep; 69(9):729-37. PubMed ID: 16850396 [TBL] [Abstract][Full Text] [Related]
4. Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi. Franzen AJ; Cunha MM; Miranda K; Hentschel J; Plattner H; da Silva MB; Salgado CG; de Souza W; Rozental S J Struct Biol; 2008 Apr; 162(1):75-84. PubMed ID: 18096404 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory effect of melanin on the interaction of Fonsecaea pedrosoi with mammalian cells in vitro. Farbiarz SR; de Carvalho TU; Alviano C; de Souza W J Med Vet Mycol; 1992; 30(4):265-73. PubMed ID: 1432486 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin. Bocca AL; Brito PP; Figueiredo F; Tosta CE Mycopathologia; 2006 Apr; 161(4):195-203. PubMed ID: 16552481 [TBL] [Abstract][Full Text] [Related]
7. Melanin from Fonsecaea pedrosoi induces production of human antifungal antibodies and enhances the antimicrobial efficacy of phagocytes. Alviano DS; Franzen AJ; Travassos LR; Holandino C; Rozental S; Ejzemberg R; Alviano CS; Rodrigues ML Infect Immun; 2004 Jan; 72(1):229-37. PubMed ID: 14688100 [TBL] [Abstract][Full Text] [Related]
8. Melanin in a meristematic mutant of Fonsecaea monophora inhibits the production of nitric oxide and Th1 cytokines of murine macrophages. Zhang J; Wang L; Xi L; Huang H; Hu Y; Li X; Huang X; Lu S; Sun J Mycopathologia; 2013 Jun; 175(5-6):515-22. PubMed ID: 23054330 [TBL] [Abstract][Full Text] [Related]
9. Melanin particles isolated from the fungus Fonsecaea pedrosoi activates the human complement system. Pinto L; Granja LFZ; Almeida MA; Alviano DS; Silva MHD; Ejzemberg R; Rozental S; Alviano CS Mem Inst Oswaldo Cruz; 2018 Jun; 113(8):e180120. PubMed ID: 29947713 [TBL] [Abstract][Full Text] [Related]
10. Phagocytosis, production of nitric oxide and pro-inflammatory cytokines by macrophages in the presence of dematiaceous [correction of dematiaceus] fungi that cause chromoblastomycosis. Hayakawa M; Ghosn EE; da Gloria Teixeria de Sousa M; Ferreira KS; Almeida SR Scand J Immunol; 2006 Oct; 64(4):382-7. PubMed ID: 16970678 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide promotes the progression of periapical lesion via inducing macrophage and osteoblast apoptosis. Lin SK; Kok SH; Lin LD; Wang CC; Kuo MY; Lin CT; Hsiao M; Hong CY Oral Microbiol Immunol; 2007 Feb; 22(1):24-9. PubMed ID: 17241167 [TBL] [Abstract][Full Text] [Related]
14. Differential effect of buffer on the spin trapping of nitric oxide by iron chelates. Porasuphatana S; Weaver J; Budzichowski TA; Tsai P; Rosen GM Anal Biochem; 2001 Nov; 298(1):50-6. PubMed ID: 11673894 [TBL] [Abstract][Full Text] [Related]
15. Supressive effect of maslinic acid from pomace olive oil on oxidative stress and cytokine production in stimulated murine macrophages. Márquez Martín A; de la Puerta Vázquez R; Fernández-Arche A; Ruiz-Gutiérrez V Free Radic Res; 2006 Mar; 40(3):295-302. PubMed ID: 16484046 [TBL] [Abstract][Full Text] [Related]
16. Fine structure and cytochemical study of the interaction between Fonsecaea pedrosoi and rat polymorphonuclear leukocyte. Rozental S; Alviano CS; de Souza W J Med Vet Mycol; 1996; 34(5):323-30. PubMed ID: 8912165 [TBL] [Abstract][Full Text] [Related]
17. Chemical structure of beta-galactofuranose-containing polysaccharide and O-linked oligosaccharides obtained from the cell wall of pathogenic dematiaceous fungus Fonsecaea pedrosoi. Shibata N; Okawa Y Glycobiology; 2011 Jan; 21(1):69-81. PubMed ID: 20833653 [TBL] [Abstract][Full Text] [Related]
18. Morphometric and densitometric study of the biogenesis of electron-dense granules in Fonsecaea pedrosoi. Franzen AJ; de Souza W; Farina M; Alviano CS; Rozental S FEMS Microbiol Lett; 1999 Apr; 173(2):395-402. PubMed ID: 15586434 [TBL] [Abstract][Full Text] [Related]
19. Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. Kogej T; Wheeler MH; Lanisnik Rizner T; Gunde-Cimerman N FEMS Microbiol Lett; 2004 Mar; 232(2):203-9. PubMed ID: 15033240 [TBL] [Abstract][Full Text] [Related]
20. Up-regulation of heme-binding protein 23 (HBP23) gene expression by lipopolysaccharide is mediated via a nitric oxide-dependent signaling pathway in rat Kupffer cells. Immenschuh S; Stritzke J; Iwahara S; Ramadori G Hepatology; 1999 Jul; 30(1):118-27. PubMed ID: 10385647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]