These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 20233438)
21. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Kejžar A; Gobec S; Plemenitaš A; Lenassi M Fungal Biol; 2013 May; 117(5):368-79. PubMed ID: 23719222 [TBL] [Abstract][Full Text] [Related]
22. Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-kappaB pathways. Jung WK; Choi I; Lee DY; Yea SS; Choi YH; Kim MM; Park SG; Seo SK; Lee SW; Lee CM; Park YM; Choi IW Int J Biochem Cell Biol; 2008; 40(11):2572-82. PubMed ID: 18571461 [TBL] [Abstract][Full Text] [Related]
23. Nitric oxide inhibits inducible nitric oxide synthase mRNA expression in RAW 264.7 macrophages. Hinz B; Brune K; Pahl A Biochem Biophys Res Commun; 2000 May; 271(2):353-7. PubMed ID: 10799301 [TBL] [Abstract][Full Text] [Related]
24. Deletion of pksA attenuates the melanogenesis, growth and sporulation ability and causes increased sensitivity to stress response and antifungal drugs in the human pathogenic fungus Fonsecaea monophora. Xiao X; Li Y; Lan Y; Zhang J; He Y; Cai W; Chen Z; Xi L; Zhang J Microbiol Res; 2021 Mar; 244():126668. PubMed ID: 33359842 [TBL] [Abstract][Full Text] [Related]
25. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species. Maeng O; Kim YC; Shin HJ; Lee JO; Huh TL; Kang KI; Kim YS; Paik SG; Lee H Biochem Biophys Res Commun; 2004 Apr; 317(2):558-64. PubMed ID: 15063794 [TBL] [Abstract][Full Text] [Related]
27. Oxidative neurotoxicity in rat cerebral cortex neurons: synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3. Wang JY; Shum AY; Ho YJ; Wang JY J Neurosci Res; 2003 May; 72(4):508-19. PubMed ID: 12704812 [TBL] [Abstract][Full Text] [Related]
28. Lactoperoxidase-catalyzed oxidation of melanin by reactive nitrogen species derived from nitrite (NO2-): an EPR study. Reszka KJ; Matuszak Z; Chignell CF Free Radic Biol Med; 1998 Jul; 25(2):208-16. PubMed ID: 9667498 [TBL] [Abstract][Full Text] [Related]
29. A chitin-like component on sclerotic cells of Fonsecaea pedrosoi inhibits Dectin-1-mediated murine Th17 development by masking β-glucans. Dong B; Li D; Li R; Chen SC; Liu W; Liu W; Chen L; Chen Y; Zhang X; Tong Z; Xia Y; Xia P; Wang Y; Duan Y PLoS One; 2014; 9(12):e114113. PubMed ID: 25490199 [TBL] [Abstract][Full Text] [Related]
30. Local phagocytic responses after murine infection with different forms of Fonsecaea pedrosoi and sclerotic bodies originating from an inoculum of conidiogenous cells. Machado AP; Silva MR; Fischman O Mycoses; 2011 May; 54(3):202-11. PubMed ID: 19925569 [TBL] [Abstract][Full Text] [Related]
31. Characterization of Fonsecaea pedrosoi melanin. Alviano CS; Farbiarz SR; De Souza W; Angluster J; Travassos LR J Gen Microbiol; 1991 Apr; 137(4):837-44. PubMed ID: 1856679 [TBL] [Abstract][Full Text] [Related]
32. Transcriptional profiling of macrophages infected with Fonsecaea monophora. Shi M; Sun J; Lu S; Qin J; Xi L; Zhang J Mycoses; 2019 Apr; 62(4):374-383. PubMed ID: 30656755 [TBL] [Abstract][Full Text] [Related]
33. Prediction of melanin content of Fonsecaea pedrosoi using Fourier transform infrared spectroscopy (FTIR) and chemometrics. Koehler A; de Moraes PC; Heidrich D; Scroferneker ML; Ferrão MF; Corbellini VA Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123945. PubMed ID: 38295590 [TBL] [Abstract][Full Text] [Related]
34. A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Nimrichter L; Barreto-Bergter E; Mendonça-Filho RR; Kneipp LF; Mazzi MT; Salve P; Farias SE; Wait R; Alviano CS; Rodrigues ML Microbes Infect; 2004 Jun; 6(7):657-65. PubMed ID: 15158773 [TBL] [Abstract][Full Text] [Related]
35. Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Pacelli C; Cassaro A; Maturilli A; Timperio AM; Gevi F; Cavalazzi B; Stefan M; Ghica D; Onofri S Appl Microbiol Biotechnol; 2020 Jul; 104(14):6385-6395. PubMed ID: 32447439 [TBL] [Abstract][Full Text] [Related]
36. Melanin synthesis by Sclerotinia sclerotiorum. Butler MJ; Gardiner RB; Day AW Mycologia; 2009; 101(3):296-304. PubMed ID: 19537203 [TBL] [Abstract][Full Text] [Related]
37. Transformation of Fonsecaea pedrosoi into sclerotic cells links to the refractoriness of experimental chromoblastomycosis in BALB/c mice via a mechanism involving a chitin-induced impairment of IFN-γ production. Dong B; Tong Z; Li R; Chen SC; Liu W; Liu W; Chen Y; Zhang X; Duan Y; Li D; Chen L PLoS Negl Trop Dis; 2018 Feb; 12(2):e0006237. PubMed ID: 29481557 [TBL] [Abstract][Full Text] [Related]
38. Melanins from two selected isolates of Pseudocercospora griseola grown in-vitro: Chemical features and redox activity. Bárcena A; Bruno M; Gennaro A; Rozas MF; Mirífico MV; Balatti PA; Saparrat MCN J Photochem Photobiol B; 2018 Sep; 186():207-215. PubMed ID: 30075426 [TBL] [Abstract][Full Text] [Related]
39. Physicochemical characterization and antioxidant activity of melanin from a novel strain of Aspergillus bridgeri ICTF-201. Kumar CG; Mongolla P; Pombala S; Kamle A; Joseph J Lett Appl Microbiol; 2011 Sep; 53(3):350-8. PubMed ID: 21726247 [TBL] [Abstract][Full Text] [Related]
40. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas. Beltrán-García MJ; Prado FM; Oliveira MS; Ortiz-Mendoza D; Scalfo AC; Pessoa A; Medeiros MH; White JF; Di Mascio P PLoS One; 2014; 9(3):e91616. PubMed ID: 24646830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]