These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 20233504)
21. Optimization of the structure of polyurethanes for bone tissue engineering applications. Bil M; Ryszkowska J; Woźniak P; Kurzydłowski KJ; Lewandowska-Szumieł M Acta Biomater; 2010 Jul; 6(7):2501-10. PubMed ID: 19723595 [TBL] [Abstract][Full Text] [Related]
22. Impact of silicone-based block copolymer surfactants on the surface and bulk microscopic organization of a biodegradable polymer, poly(epsilon-caprolactone). Viville P; Lazzaroni R; Dubois P; Kotzev A; Geerts Y; Borcia G; Pireaux JJ Biomacromolecules; 2003; 4(3):696-703. PubMed ID: 12741787 [TBL] [Abstract][Full Text] [Related]
23. Surface property and in vitro biodegradation of microspheres fabricated by poly(epsilon-caprolactone-b-ethylene oxide) diblock copolymers. Yu G; Zhang Y; Shi X; Li Z; Gan Z J Biomed Mater Res A; 2008 Mar; 84(4):926-39. PubMed ID: 17647229 [TBL] [Abstract][Full Text] [Related]
24. Biocompatibility of sorbitol-containing polyesters. Part I: Synthesis, surface analysis and cell response in vitro. Mei Y; Kumar A; Gao W; Gross R; Kennedy SB; Washburn NR; Amis EJ; Elliott JT Biomaterials; 2004 Aug; 25(18):4195-201. PubMed ID: 15046909 [TBL] [Abstract][Full Text] [Related]
25. Enhanced biocompatibility in biostable poly(carbonate)urethane. Hsu SH; Kao YC; Lin ZC Macromol Biosci; 2004 Apr; 4(4):464-70. PubMed ID: 15468239 [TBL] [Abstract][Full Text] [Related]
26. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers. Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and characterization of the novel transfection reagent poly(amino ester glycol urethane). Tseng SJ; Tang SC Biomacromolecules; 2007 Jan; 8(1):50-8. PubMed ID: 17206787 [TBL] [Abstract][Full Text] [Related]
28. Polymeric grafting of acrylic acid onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate): surface functionalization for tissue engineering applications. Grøndahl L; Chandler-Temple A; Trau M Biomacromolecules; 2005; 6(4):2197-203. PubMed ID: 16004463 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and hemocompatibility of biomembrane mimicing poly(carbonate urethane)s containing fluorinated alkyl phosphatidylcholine side groups. Tan H; Liu J; Li J; Jiang X; Xie X; Zhong Y; Fu Q Biomacromolecules; 2006 Sep; 7(9):2591-9. PubMed ID: 16961322 [TBL] [Abstract][Full Text] [Related]
31. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Wen X; Tresco PA Biomaterials; 2006 Jul; 27(20):3800-9. PubMed ID: 16564567 [TBL] [Abstract][Full Text] [Related]
32. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing gemini quaternary ammonium cationic groups. Ding M; Li J; Fu X; Zhou J; Tan H; Gu Q; Fu Q Biomacromolecules; 2009 Oct; 10(10):2857-65. PubMed ID: 19817491 [TBL] [Abstract][Full Text] [Related]
33. Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s. Liu Q; Cheng S; Li Z; Xu K; Chen GQ J Biomed Mater Res A; 2009 Sep; 90(4):1162-76. PubMed ID: 18671259 [TBL] [Abstract][Full Text] [Related]
34. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]
35. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. Karp JM; Shoichet MS; Davies JE J Biomed Mater Res A; 2003 Feb; 64(2):388-96. PubMed ID: 12522827 [TBL] [Abstract][Full Text] [Related]
36. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
37. PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. Cohn D; Lando G; Sosnik A; Garty S; Levi A Biomaterials; 2006 Mar; 27(9):1718-27. PubMed ID: 16310849 [TBL] [Abstract][Full Text] [Related]
38. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Santiago LY; Nowak RW; Peter Rubin J; Marra KG Biomaterials; 2006 May; 27(15):2962-9. PubMed ID: 16445976 [TBL] [Abstract][Full Text] [Related]
39. Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Gualandi C; White LJ; Chen L; Gross RA; Shakesheff KM; Howdle SM; Scandola M Acta Biomater; 2010 Jan; 6(1):130-6. PubMed ID: 19619678 [TBL] [Abstract][Full Text] [Related]
40. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]