BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 202336)

  • 1. Formation of guanosine 3',5'-cyclic monophosphate by thyroliberin in cultured rat pituitary cells. A possible role in stimulation of prolactin synthesis.
    Gautvik KM; Haug E; Kriz M
    Biochim Biophys Acta; 1978 Jan; 538(2):354-63. PubMed ID: 202336
    [No Abstract]   [Full Text] [Related]  

  • 2. Stimulation of prolactin synthesis and of adenosine 3':5'-cyclic phosphate formation by prostaglandins and thyroliberin in cultured rat pituitary cells.
    Gautvik KM; Kriz M
    Biochem J; 1976 Apr; 156(1):111-7. PubMed ID: 182137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of guanosine 3',5'-cyclic monophosphate accumulation in rat anterior pituitary gland in vitro by synthetic somatostatin.
    Kaneko T; Oka H; Munemure M; Suzuki S; Yasuda H
    Biochem Biophys Res Commun; 1974 Nov; 61(1):53-7. PubMed ID: 4374210
    [No Abstract]   [Full Text] [Related]  

  • 4. On the role of extracellular Ca2+ for prolactin release and adenosine 3':5'-monophosphate formation induced by thyroliberin in cultured rat pituitary cells.
    Gautvik KM; Iversen JG; Sand O
    Life Sci; 1980 Mar; 26(12):995-1005. PubMed ID: 6248699
    [No Abstract]   [Full Text] [Related]  

  • 5. Pituitary cyclic nucleotides and thyrotropin-releasing hormone action: the relationship of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate to the release of thyrotropin and prolactin.
    Naor Z; Snyder G; Fawcett CP; McCann SM
    Endocrinology; 1980 Apr; 106(4):1304-10. PubMed ID: 6244151
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of thyroliberin on the concentration of adenosine 3':5'-phosphate and on the activity of adenosine 3':5'-phosphate-dependent protein kinase in prolactin-producing cells in culture.
    Gautvik KM; Walaas E; Walaas O
    Biochem J; 1977 Feb; 162(2):379-86. PubMed ID: 192221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of calcium and cyclic nucleotides in thyroliberin-stimulated prolactin release.
    Matthews RH; Kiefer KA; Malarkey WB
    Life Sci; 1981 Jun; 28(26):2909-15. PubMed ID: 6267400
    [No Abstract]   [Full Text] [Related]  

  • 8. A possible role of cyclic AMP in mediating the effects of thyrotropin-releasing hormone on prolactin release and on prolactin and growth hormone synthesis in pituitary cells in culture.
    Dannies PS; Gautvik KM; Tashjian AH
    Endocrinology; 1976 May; 98(5):1147-59. PubMed ID: 177274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between chemotaxis, chemotactic modulators, and cyclic nucleotide levels in tumor cells.
    Mokashi S; Delikatny SJ; Orr FW
    Cancer Res; 1983 May; 43(5):1980-3. PubMed ID: 6299536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic nucleotide metabolism in mouse brain during seizures induced by bicuculline or dibutyryl cyclic guanosine monophosphate.
    Wasterlain CG; Csiszar E
    Exp Neurol; 1980 Nov; 70(2):260-8. PubMed ID: 6253313
    [No Abstract]   [Full Text] [Related]  

  • 11. In vivo effects of pentobarbital and halothane anesthesia on levels of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in rat brain regions and pituitary.
    Kant GJ; Muller TW; Lenox RH; Meyerhoff JL
    Biochem Pharmacol; 1980 Jul; 29(13):1891-6. PubMed ID: 6249324
    [No Abstract]   [Full Text] [Related]  

  • 12. Cyclic AMP and cyclic GMP response to stress in brain and pituitary: stress elevates pituitary cyclic AMP.
    Kant GJ; Meyerhoff JL; Bunnell BN; Lenox RH
    Pharmacol Biochem Behav; 1982 Nov; 17(5):1067-72. PubMed ID: 6294684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promotion of pituitary prolactin release in rats by dibutyryl adenosine 3',5'-monophosphate.
    Nagasawa H; Yanai R
    J Endocrinol; 1972 Oct; 55(1):215-6. PubMed ID: 4350082
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of prostaglandins on prolactin and growth hormone synthesis and secretion in cultured rat pituitary cells.
    Gautvik KM; Kriz M
    Endocrinology; 1976 Feb; 98(2):352-8. PubMed ID: 813992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on growth hormone secretion. IX. Prostaglandins do not act like ionophores.
    Hertelendy F; Todd H; Narconis RJ
    Prostaglandins; 1978 Apr; 15(4):575-90. PubMed ID: 209497
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of action of somatostatin: growth-hormone release [45Ca]calcium ion efflux and cyclic nucleotide metabolism of bovine anterior-pituitary slices in the presence of prostaglandin E2 and 1-methyl-3-isobutylxanthine.
    Bicknell RJ; Young PW; Schofield JG; Albano J
    Biochem Soc Trans; 1977; 5(1):219-22. PubMed ID: 196956
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis and degradation of cyclic nucleotides in the pituitary gland, ovary and testis of rats treated with D-Trp6-luteinizing hormone-releasing hormone.
    Hierowski MT; Waring AJ; Schally AV
    Biochim Biophys Acta; 1981 Jul; 675(2):232-8. PubMed ID: 6115676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release and synthesis of prolactin by rat pituitary cell strains are regulated independently by thyrotropin-releasing hormone.
    Dannies PS; Tasjian AH
    Nature; 1976 Jun; 261(5562):707-10. PubMed ID: 180421
    [No Abstract]   [Full Text] [Related]  

  • 19. Nitrogenous compounds reversibly inhibit the adenosine 3',5'-monophosphate response to thyrotropin: this effect is dissociated from altered guanine 3',5'-monophosphate levels.
    Spaulding SW
    Endocrinology; 1979 Sep; 105(3):697-701. PubMed ID: 223830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic agonists and dibutyryl cyclic guanosine monophosphate inhibit the norepinephrine-induced accumulation of cyclic adenosine monophosphate in the rat cerebral cortex.
    Palmer GC; Chronister RB; Palmer SJ
    Neuroscience; 1980; 5(2):319-22. PubMed ID: 6246467
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.