These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20233619)

  • 1. New QSPR equations for prediction of aqueous solubility for military compounds.
    Muratov EN; Kuz'min VE; Artemenko AG; Kovdienko NA; Gorb L; Hill F; Leszczynski J
    Chemosphere; 2010 May; 79(8):887-90. PubMed ID: 20233619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
    Wang R; Jiang J; Pan Y; Cao H; Cui Y
    J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New QSPR study for the prediction of aqueous solubility of drug-like compounds.
    Duchowicz PR; Talevi A; Bruno-Blanch LE; Castro EA
    Bioorg Med Chem; 2008 Sep; 16(17):7944-55. PubMed ID: 18701302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility.
    Zhou D; Alelyunas Y; Liu R
    J Chem Inf Model; 2008 May; 48(5):981-7. PubMed ID: 18465850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation.
    Votano JR; Parham M; Hall LH; Kier LB; Hall LM
    Chem Biodivers; 2004 Nov; 1(11):1829-41. PubMed ID: 17191819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of quantum chemical approximations to environmental problems: prediction of water solubility for nitro compounds.
    Kholod YA; Muratov EN; Gorb LG; Hill FC; Artemenko AG; Kuz'min VE; Qasim M; Leszczynski J
    Environ Sci Technol; 2009 Dec; 43(24):9208-15. PubMed ID: 20000511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Random Forest and Multiple Linear Regression Techniques to QSPR Prediction of an Aqueous Solubility for Military Compounds.
    Kovdienko NA; Polishchuk PG; Muratov EN; Artemenko AG; Kuz'min VE; Gorb L; Hill F; Leszczynski J
    Mol Inform; 2010 May; 29(5):394-406. PubMed ID: 27463195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of descriptors based on Lipinski's rules in the QSPR study of aqueous solubilities.
    Duchowicz PR; Talevi A; Bellera C; Bruno-Blanch LE; Castro EA
    Bioorg Med Chem; 2007 Jun; 15(11):3711-9. PubMed ID: 17418580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships.
    Cheng A; Merz KM
    J Med Chem; 2003 Aug; 46(17):3572-80. PubMed ID: 12904062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational aqueous solubility prediction for drug-like compounds in congeneric series.
    Du-Cuny L; Huwyler J; Wiese M; Kansy M
    Eur J Med Chem; 2008 Mar; 43(3):501-12. PubMed ID: 17574307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors.
    Xu J; Zhu L; Fang D; Wang L; Xiao S; Liu L; Xu W
    J Mol Graph Model; 2012 Jun; 36():10-9. PubMed ID: 22503858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of electric spark sensitivity of nitroaromatic energetic compounds based on molecular structure.
    Keshavarz MH
    J Hazard Mater; 2008 May; 153(1-2):201-6. PubMed ID: 17888570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media.
    Ghasemi JB; Abdolmaleki A; Mandoumi N
    J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine.
    Pan Y; Jiang J; Wang R; Cao H; Cui Y
    J Hazard Mater; 2009 Sep; 168(2-3):962-9. PubMed ID: 19329246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the aqueous solubility of benzylamine salts using QSPR model.
    Tantishaiyakul V
    J Pharm Biomed Anal; 2005 Feb; 37(2):411-5. PubMed ID: 15708687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the aqueous solvation free energy of organic compounds by using autocorrelation of molecular electrostatic potential surface properties combined with response surface analysis.
    Michielan L; Bacilieri M; Kaseda C; Moro S
    Bioorg Med Chem; 2008 May; 16(10):5733-42. PubMed ID: 18406153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P.
    Hughes LD; Palmer DS; Nigsch F; Mitchell JB
    J Chem Inf Model; 2008 Jan; 48(1):220-32. PubMed ID: 18186622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular structure based model for predicting surface tension of organic compounds.
    Delgado EJ; Diaz GA
    SAR QSAR Environ Res; 2006 Oct; 17(5):483-96. PubMed ID: 17050188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solubility prediction of drugs in water-cosolvent mixtures using Abraham solvation parameters.
    Jouyban A; Soltanpour Sh; Soltani S; Chan HK; Acree WE
    J Pharm Pharm Sci; 2007; 10(3):263-77. PubMed ID: 17727790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.
    Tabaraki R; Khayamian T; Ensafi AA
    J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.