These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 20234181)
1. Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings: a quantitative proteomic analysis. Kutschera U; Deng Z; Oses-Prieto JA; Burlingame AL; Wang ZY Plant Signal Behav; 2010 May; 5(5):509-17. PubMed ID: 20234181 [TBL] [Abstract][Full Text] [Related]
2. Rapid auxin-mediated changes in the proteome of the epidermal cells in rye coleoptiles: implications for the initiation of growth. Deng Z; Xu S; Chalkley RJ; Oses-Prieto JA; Burlingame AL; Wang ZY; Kutschera U Plant Biol (Stuttg); 2012 May; 14(3):420-7. PubMed ID: 22117532 [TBL] [Abstract][Full Text] [Related]
3. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Kutschera U; Wang ZY Protoplasma; 2016 Jan; 253(1):3-14. PubMed ID: 25772679 [TBL] [Abstract][Full Text] [Related]
4. Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile. Deng Z; Wang ZY; Kutschera U Protoplasma; 2017 May; 254(3):1317-1322. PubMed ID: 27631339 [TBL] [Abstract][Full Text] [Related]
5. The biophysical basis of cell elongation and organ maturation in coleoptiles of rye seedlings: implications for shoot development. Kutschera U Plant Biol (Stuttg); 2004; 6(2):158-64. PubMed ID: 15045666 [TBL] [Abstract][Full Text] [Related]
6. Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model. Edelmann HG; Roth U Protoplasma; 2006 Dec; 229(2-4):183-91. PubMed ID: 17180500 [TBL] [Abstract][Full Text] [Related]
7. Unequal distribution of osmiophilic particles in the epidermal periplasmic space of upper and lower flanks of gravi-responding rye coleoptiles. Edelmann HG; Sievers A Planta; 1995 May; 196(2):396-9. PubMed ID: 11540147 [TBL] [Abstract][Full Text] [Related]
8. Auxin action in developing maize coleoptiles: challenges and open questions. Kutschera U; Khanna R Plant Signal Behav; 2020 Jun; 15(6):1762327. PubMed ID: 32403974 [TBL] [Abstract][Full Text] [Related]
9. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Philippar K; Fuchs I; Luthen H; Hoth S; Bauer CS; Haga K; Thiel G; Ljung K; Sandberg G; Bottger M; Becker D; Hedrich R Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12186-91. PubMed ID: 10518597 [TBL] [Abstract][Full Text] [Related]
10. Effect of low frequency pulsed magnetic field on gravitropic response and cell elongation in coleoptiles of maize seedlings. Kościarz-Grzesiok A; Sieroń-Stołtny K; Polak M; Sieroń A; Karcz W Gen Physiol Biophys; 2016 Oct; 35(4):417-424. PubMed ID: 27447398 [TBL] [Abstract][Full Text] [Related]
11. Auxin-induced elongation of short maize coleoptile segments is supported by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. Park WJ; Schäfer A; Prinsen E; van Onckelen H; Kang BG; Hertel R Planta; 2001 May; 213(1):92-100. PubMed ID: 11523660 [TBL] [Abstract][Full Text] [Related]
12. Exogenous Serotonin (5-HT) Promotes Mesocotyl and Coleoptile Elongation in Maize Seedlings under Deep-Seeding Stress through Enhancing Auxin Accumulation and Inhibiting Lignin Formation. Zhao X; Li J; Niu Y; Hossain Z; Gao X; Bai X; Mao T; Qi G; He F Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069387 [TBL] [Abstract][Full Text] [Related]
13. Proteomic characterization of herbicide safener-induced proteins in the coleoptile of Triticum tauschii seedlings. Zhang Q; Riechers DE Proteomics; 2004 Jul; 4(7):2058-71. PubMed ID: 15221767 [TBL] [Abstract][Full Text] [Related]
14. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays. Niu L; Wu Z; Liu H; Wu X; Wang W BMC Genomics; 2019 Oct; 20(1):758. PubMed ID: 31640549 [TBL] [Abstract][Full Text] [Related]
15. [Alteration of transport activity of proton pumps in coleoptile cells during early development stages of maize seedlings]. Shishova MF; Tankeliun OV; Rudashevskaia EL; Emel'ianov VV; Shakhova NV; Kirpichnikova AA Ontogenez; 2012; 43(6):413-24. PubMed ID: 23401959 [TBL] [Abstract][Full Text] [Related]
16. Effect of ethylene producer ethrel and antioxidant ionol (BHT) on the proteolytic apparatus in coleoptiles of wheat seedlings during apoptosis. Fedoreyeva LI; Aleksandrushkina NI; Dunaevsky YE; Belozersky MA; Vanyushin BF Biochemistry (Mosc); 2003 Apr; 68(4):464-9. PubMed ID: 12765530 [TBL] [Abstract][Full Text] [Related]
17. A shift in sensitivity to auxin within development of maize seedlings. Shishova M; Yemelyanov V; Rudashevskaya E; Lindberg S J Plant Physiol; 2007 Oct; 164(10):1323-30. PubMed ID: 17074416 [TBL] [Abstract][Full Text] [Related]
18. Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Philippar K; Ivashikina N; Ache P; Christian M; Lüthen H; Palme K; Hedrich R Plant J; 2004 Mar; 37(6):815-27. PubMed ID: 14996216 [TBL] [Abstract][Full Text] [Related]
19. Effects of Naphthazarin (DHNQ) Combined with Lawsone (NQ-2-OH) or 1,4-Naphthoquinone (NQ) on the Auxin-Induced Growth of Rudnicka M; Ludynia M; Karcz W Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30978914 [TBL] [Abstract][Full Text] [Related]
20. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]