BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20234181)

  • 1. Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings: a quantitative proteomic analysis.
    Kutschera U; Deng Z; Oses-Prieto JA; Burlingame AL; Wang ZY
    Plant Signal Behav; 2010 May; 5(5):509-17. PubMed ID: 20234181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid auxin-mediated changes in the proteome of the epidermal cells in rye coleoptiles: implications for the initiation of growth.
    Deng Z; Xu S; Chalkley RJ; Oses-Prieto JA; Burlingame AL; Wang ZY; Kutschera U
    Plant Biol (Stuttg); 2012 May; 14(3):420-7. PubMed ID: 22117532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation.
    Kutschera U; Wang ZY
    Protoplasma; 2016 Jan; 253(1):3-14. PubMed ID: 25772679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile.
    Deng Z; Wang ZY; Kutschera U
    Protoplasma; 2017 May; 254(3):1317-1322. PubMed ID: 27631339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biophysical basis of cell elongation and organ maturation in coleoptiles of rye seedlings: implications for shoot development.
    Kutschera U
    Plant Biol (Stuttg); 2004; 6(2):158-64. PubMed ID: 15045666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model.
    Edelmann HG; Roth U
    Protoplasma; 2006 Dec; 229(2-4):183-91. PubMed ID: 17180500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unequal distribution of osmiophilic particles in the epidermal periplasmic space of upper and lower flanks of gravi-responding rye coleoptiles.
    Edelmann HG; Sievers A
    Planta; 1995 May; 196(2):396-9. PubMed ID: 11540147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin action in developing maize coleoptiles: challenges and open questions.
    Kutschera U; Khanna R
    Plant Signal Behav; 2020 Jun; 15(6):1762327. PubMed ID: 32403974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism.
    Philippar K; Fuchs I; Luthen H; Hoth S; Bauer CS; Haga K; Thiel G; Ljung K; Sandberg G; Bottger M; Becker D; Hedrich R
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12186-91. PubMed ID: 10518597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of low frequency pulsed magnetic field on gravitropic response and cell elongation in coleoptiles of maize seedlings.
    Kościarz-Grzesiok A; Sieroń-Stołtny K; Polak M; Sieroń A; Karcz W
    Gen Physiol Biophys; 2016 Oct; 35(4):417-424. PubMed ID: 27447398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auxin-induced elongation of short maize coleoptile segments is supported by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one.
    Park WJ; Schäfer A; Prinsen E; van Onckelen H; Kang BG; Hertel R
    Planta; 2001 May; 213(1):92-100. PubMed ID: 11523660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous Serotonin (5-HT) Promotes Mesocotyl and Coleoptile Elongation in Maize Seedlings under Deep-Seeding Stress through Enhancing Auxin Accumulation and Inhibiting Lignin Formation.
    Zhao X; Li J; Niu Y; Hossain Z; Gao X; Bai X; Mao T; Qi G; He F
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic characterization of herbicide safener-induced proteins in the coleoptile of Triticum tauschii seedlings.
    Zhang Q; Riechers DE
    Proteomics; 2004 Jul; 4(7):2058-71. PubMed ID: 15221767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays.
    Niu L; Wu Z; Liu H; Wu X; Wang W
    BMC Genomics; 2019 Oct; 20(1):758. PubMed ID: 31640549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Alteration of transport activity of proton pumps in coleoptile cells during early development stages of maize seedlings].
    Shishova MF; Tankeliun OV; Rudashevskaia EL; Emel'ianov VV; Shakhova NV; Kirpichnikova AA
    Ontogenez; 2012; 43(6):413-24. PubMed ID: 23401959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ethylene producer ethrel and antioxidant ionol (BHT) on the proteolytic apparatus in coleoptiles of wheat seedlings during apoptosis.
    Fedoreyeva LI; Aleksandrushkina NI; Dunaevsky YE; Belozersky MA; Vanyushin BF
    Biochemistry (Mosc); 2003 Apr; 68(4):464-9. PubMed ID: 12765530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shift in sensitivity to auxin within development of maize seedlings.
    Shishova M; Yemelyanov V; Rudashevskaya E; Lindberg S
    J Plant Physiol; 2007 Oct; 164(10):1323-30. PubMed ID: 17074416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana.
    Philippar K; Ivashikina N; Ache P; Christian M; Lüthen H; Palme K; Hedrich R
    Plant J; 2004 Mar; 37(6):815-27. PubMed ID: 14996216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Naphthazarin (DHNQ) Combined with Lawsone (NQ-2-OH) or 1,4-Naphthoquinone (NQ) on the Auxin-Induced Growth of
    Rudnicka M; Ludynia M; Karcz W
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30978914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis.
    Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T
    Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.