These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20234542)

  • 1. Determining the absorption coefficient of absorbing thin films with optical waveguides.
    Sasaki K; Takahashi H; Kudo Y; Suzuki N
    Appl Opt; 1980 Sep; 19(17):3018-21. PubMed ID: 20234542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the optical constants of vacuum evaporated II-VI compound thin films with optical waveguides.
    Sasaki K; Kudo Y; Watanabe H; Hamano O
    Appl Opt; 1981 Nov; 20(21):3715-8. PubMed ID: 20372250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations of the optical properties of thin, highly absorbing films under attenuated total reflection conditions: Leaky waveguide mode distortions.
    Piruska A; Zudans I; Heineman WR; Seliskar CJ
    Talanta; 2005 Mar; 65(5):1110-9. PubMed ID: 18969920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical analysis of absorbing thin films: application to ternary chalcopyrite semiconductors.
    Hernández-Rojas JL; Lucĺa ML; Mátil I; González-Díaz G; Santamaría J; Sánchez-Quesada F
    Appl Opt; 1992 Apr; 31(10):1606-11. PubMed ID: 20720795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guided-mode-resonance-enhanced measurement of thin-film absorption.
    Wang Y; Huang Y; Sun J; Pandey S; Lu M
    Opt Express; 2015 Nov; 23(22):28567-73. PubMed ID: 26561126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared optical constant determination of weakly absorbing dielectric thin films.
    Mouchart J; Begel J; Clément C
    Appl Opt; 1992 Mar; 31(7):885-97. PubMed ID: 20720697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin-film 2.8-microm and 3.8-microm absorption in single-layer films.
    Harrington JA; Rudisill JE; Braunstein M
    Appl Opt; 1978 Sep; 17(17):2798-801. PubMed ID: 20203869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical method for heterogeneity analysis in thin absorbing films.
    Dolizy P; Groliere F
    Appl Opt; 1987 Jun; 26(12):2401-6. PubMed ID: 20489882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved method for determining the optical constants of thin films and its application to molecular-beam-deposited polycrystalline layers.
    Meredith P; Buller GS; Walker AC
    Appl Opt; 1993 Oct; 32(28):5619-27. PubMed ID: 20856378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weakly absorbing layers: interferometric determination of their optical parameters.
    Demner Y; Shamir J
    Appl Opt; 1978 Dec; 17(23):3738-45. PubMed ID: 20208601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin film composite optical waveguides for sensor applications: a review.
    Yimit A; Rossberg AG; Amemiya T; Itoh K
    Talanta; 2005 Mar; 65(5):1102-9. PubMed ID: 18969919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-deposited thin films as passive and active light-guides.
    Ulrich R; Weber HP
    Appl Opt; 1972 Feb; 11(2):428-34. PubMed ID: 20111519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption.
    Kang SW; Sasaki K; Minamitani H
    Appl Opt; 1993 Jul; 32(19):3544-9. PubMed ID: 20829979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss GeO(2) optical waveguide fabrication using low deposition rate rf sputtering.
    Yin ZY; Garside BK
    Appl Opt; 1982 Dec; 21(23):4324-8. PubMed ID: 20401063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of optical constants of absorbing materials using transmission and reflection of thin films on partially metallized substrates: analysis of the new (T,R(m)) technique.
    Hjortsberg A
    Appl Opt; 1981 Apr; 20(7):1254-63. PubMed ID: 20309294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation and thermal evolution of rhodamine 6G dye molecules adsorbed in porous columnar optical SiO2 thin films.
    Sánchez-Valencia JR; Blaszczyk-Lezak I; Espinós JP; Hamad S; González-Elipe AR; Barranco A
    Langmuir; 2009 Aug; 25(16):9140-8. PubMed ID: 19492783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical factors in the photoemission of thin films.
    Ramberg EG
    Appl Opt; 1967 Dec; 6(12):2163-70. PubMed ID: 20062380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.
    Bolakis C; Grbovic D; Lavrik NV; Karunasiri G
    Opt Express; 2010 Jul; 18(14):14488-95. PubMed ID: 20639934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of regularly structured nanotubular TiO2 thin films on ITO and their modification with thin ALD-grown layers.
    Tupala J; Kemell M; Härkönen E; Ritala M; Leskelä M
    Nanotechnology; 2012 Mar; 23(12):125707. PubMed ID: 22414989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical constants of thin silicon films near the silicon L(2,3) absorption edge.
    Seely JF; Hunter WR; Rife JC; Kowalski MP
    Appl Opt; 1992 Dec; 31(34):7367-70. PubMed ID: 20802608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.