These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20234940)

  • 41. Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst.
    Li Y; Zhang H; Guo Z; Han J; Zhao X; Zhao Q; Kim SJ
    Langmuir; 2008 Aug; 24(15):8351-7. PubMed ID: 18605746
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel Ag-Cu bimetallic alloy decorated near-infrared responsive three-dimensional rod-like architectures for efficient photocatalytic water purification.
    Zhang Y; Wang L; Kong X; Jiang H; Zhang F; Shi J
    J Colloid Interface Sci; 2018 Jul; 522():29-39. PubMed ID: 29574266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles.
    Wang M; Mi CC; Wang WX; Liu CH; Wu YF; Xu ZR; Mao CB; Xu SK
    ACS Nano; 2009 Jun; 3(6):1580-6. PubMed ID: 19476317
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria.
    Chen WJ; Tsai PJ; Chen YC
    Small; 2008 Apr; 4(4):485-91. PubMed ID: 18348230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation.
    Hirakawa T; Kamat PV
    J Am Chem Soc; 2005 Mar; 127(11):3928-34. PubMed ID: 15771529
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process.
    Wei Z; Sun J; Xie Z; Liang M; Chen S
    J Hazard Mater; 2010 May; 177(1-3):814-21. PubMed ID: 20089355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visible and near-infrared driven Yb
    Zhang K; Guan J; Mu P; Yang K; Xie Y; Li X; Zou L; Huang W; Yu C; Dai W
    Dalton Trans; 2020 Oct; 49(40):14030-14045. PubMed ID: 33078794
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preferential suppression of high-energy upconverted emissions of Tm3+ by Dy3+ ions in Tm3+/Dy3+/Yb3+-doped LiYF4 colloidal nanocrystals.
    Mahalingam V; Naccache R; Vetrone F; Capobianco JA
    Chem Commun (Camb); 2011 Mar; 47(12):3481-3. PubMed ID: 21308114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry.
    Chen CT; Chen YC
    Anal Chem; 2005 Sep; 77(18):5912-9. PubMed ID: 16159121
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles.
    Wang F; Liu X
    J Am Chem Soc; 2008 Apr; 130(17):5642-3. PubMed ID: 18393419
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid.
    Ghasemi S; Rahimnejad S; Setayesh SR; Rohani S; Gholami MR
    J Hazard Mater; 2009 Dec; 172(2-3):1573-8. PubMed ID: 19735982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation.
    Tian G; Pan K; Fu H; Jing L; Zhou W
    J Hazard Mater; 2009 Jul; 166(2-3):939-44. PubMed ID: 19144462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts.
    Joung SK; Amemiya T; Murabayashi M; Itoh K
    Chemistry; 2006 Jul; 12(21):5526-34. PubMed ID: 16548017
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.
    Li G; Nan H; Zheng X
    Analyst; 2009 Jul; 134(7):1396-404. PubMed ID: 19562208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: preparation and photocatalytic behavior of TiO2/Sr2CeO4.
    Zhong J; Wang J; Tao L; Gong M; Zhimin L; Chen Y
    J Hazard Mater; 2007 Feb; 140(1-2):200-4. PubMed ID: 16876934
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Composites of metal nanoparticles and TiO2 immobilized in spherical polyelectrolyte brushes.
    Lu Y; Lunkenbein T; Preussner J; Proch S; Breu J; Kempe R; Ballauff M
    Langmuir; 2010 Mar; 26(6):4176-83. PubMed ID: 20158222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics and mechanism of TNT degradation in TiO2 photocatalysis.
    Son HS; Lee SJ; Cho IH; Zoh KD
    Chemosphere; 2004 Oct; 57(4):309-17. PubMed ID: 15312729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sonochemical synthesis of Au-TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment.
    Anandan S; Ashokkumar M
    Ultrason Sonochem; 2009 Mar; 16(3):316-20. PubMed ID: 19028129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-assembly of Yb3+-Tm3+ co-doped YF3 elongated nanocrystals into nanobundles of straw and up-conversion fluorescence.
    Zhang J; Qin W; Zhang J; Wang Y; Cao C; Jin Y; Wei G; Wang G; Wang L
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1388-91. PubMed ID: 18468160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrochemical properties of core-shell TiC-TiO2 nanoparticle films immobilized at ITO electrode surfaces.
    Stott SJ; Mortimer RJ; Dann SE; Oyama M; Marken F
    Phys Chem Chem Phys; 2006 Dec; 8(46):5437-43. PubMed ID: 17119652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.