BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20235194)

  • 1. Sequence environment of mutation affects stability and folding in collagen model peptides of osteogenesis imperfecta.
    Bryan MA; Cheng H; Brodsky B
    Biopolymers; 2011; 96(1):4-13. PubMed ID: 20235194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine.
    Beck K; Chan VC; Shenoy N; Kirkpatrick A; Ramshaw JA; Brodsky B
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4273-8. PubMed ID: 10725403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenesis imperfecta missense mutations in collagen: structural consequences of a glycine to alanine replacement at a highly charged site.
    Xiao J; Cheng H; Silva T; Baum J; Brodsky B
    Biochemistry; 2011 Dec; 50(50):10771-80. PubMed ID: 22054507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility.
    Xiao J; Madhan B; Li Y; Brodsky B; Baum J
    Biophys J; 2011 Jul; 101(2):449-58. PubMed ID: 21767498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding.
    Qiu Y; Mekkat A; Yu H; Yigit S; Hamaia S; Farndale RW; Kaplan DL; Lin YS; Brodsky B
    J Struct Biol; 2018 Sep; 203(3):255-262. PubMed ID: 29758270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides.
    Yang W; Battineni ML; Brodsky B
    Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide.
    Bhate M; Wang X; Baum J; Brodsky B
    Biochemistry; 2002 May; 41(20):6539-47. PubMed ID: 12009919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations.
    Bodian DL; Madhan B; Brodsky B; Klein TE
    Biochemistry; 2008 May; 47(19):5424-32. PubMed ID: 18412368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation.
    Cheng H; Rashid S; Yu Z; Yoshizumi A; Hwang E; Brodsky B
    J Biol Chem; 2011 Jan; 286(3):2041-6. PubMed ID: 21071452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant collagen studies link the severe conformational changes induced by osteogenesis imperfecta mutations to the disruption of a set of interchain salt bridges.
    Xu K; Nowak I; Kirchner M; Xu Y
    J Biol Chem; 2008 Dec; 283(49):34337-44. PubMed ID: 18845533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease.
    Liu X; Kim S; Dai QH; Brodsky B; Baum J
    Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence dependence of renucleation after a Gly mutation in model collagen peptides.
    Hyde TJ; Bryan MA; Brodsky B; Baum J
    J Biol Chem; 2006 Dec; 281(48):36937-43. PubMed ID: 16998200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability junction at a common mutation site in the collagenous domain of the mannose binding lectin.
    Mohs A; Li Y; Doss-Pepe E; Baum J; Brodsky B
    Biochemistry; 2005 Feb; 44(6):1793-9. PubMed ID: 15697204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence.
    Okuyama K; Miyama K; Morimoto T; Masakiyo K; Mizuno K; Bächinger HP
    Biopolymers; 2011 Sep; 95(9):628-40. PubMed ID: 21442606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide.
    Chen YS; Chen CC; Horng JC
    Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the -Gly-3(S)-hydroxyprolyl-4(R)-hydroxyprolyl- tripeptide unit on the stability of collagen model peptides.
    Mizuno K; Peyton DH; Hayashi T; Engel J; Bächinger HP
    FEBS J; 2008 Dec; 275(23):5830-40. PubMed ID: 19021759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD and NMR investigation of collagen peptides mimicking a pathological Gly-Ser mutation and a natural interruption in a similar highly charged sequence context.
    Sun X; Liu S; Yu W; Wang S; Xiao J
    Protein Sci; 2016 Feb; 25(2):383-92. PubMed ID: 26457583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic, Register-Specific, AAB Heterotrimers to Investigate Single Point Glycine Mutations in Osteogenesis Imperfecta.
    Acevedo-Jake AM; Clements KA; Hartgerink JD
    Biomacromolecules; 2016 Mar; 17(3):914-21. PubMed ID: 26859706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of Glycine Mutations in the Fibronectin-binding Sequence of Collagen.
    Chhum P; Yu H; An B; Doyon BR; Lin YS; Brodsky B
    J Biol Chem; 2016 Dec; 291(53):27073-27086. PubMed ID: 27799304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.