BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20235198)

  • 1. Polymerization and matrix physical properties as important design considerations for soluble collagen formulations.
    Kreger ST; Bell BJ; Bailey J; Stites E; Kuske J; Waisner B; Voytik-Harbin SL
    Biopolymers; 2010 Aug; 93(8):690-707. PubMed ID: 20235198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen oligomers modulate physical and biological properties of three-dimensional self-assembled matrices.
    Bailey JL; Critser PJ; Whittington C; Kuske JL; Yoder MC; Voytik-Harbin SL
    Biopolymers; 2011 Feb; 95(2):77-93. PubMed ID: 20740490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibril microstructure affects strain transmission within collagen extracellular matrices.
    Roeder BA; Kokini K; Voytik-Harbin SL
    J Biomech Eng; 2009 Mar; 131(3):031004. PubMed ID: 19154063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.
    Brightman AO; Rajwa BP; Sturgis JE; McCallister ME; Robinson JP; Voytik-Harbin SL
    Biopolymers; 2000 Sep; 54(3):222-34. PubMed ID: 10861383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure.
    Roeder BA; Kokini K; Sturgis JE; Robinson JP; Voytik-Harbin SL
    J Biomech Eng; 2002 Apr; 124(2):214-22. PubMed ID: 12002131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomers modulate interfibril branching and mass transport properties of collagen matrices.
    Whittington CF; Brandner E; Teo KY; Han B; Nauman E; Voytik-Harbin SL
    Microsc Microanal; 2013 Oct; 19(5):1323-33. PubMed ID: 23842082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.
    Sapudom J; Rubner S; Martin S; Kurth T; Riedel S; Mierke CT; Pompe T
    Biomaterials; 2015 Jun; 52():367-75. PubMed ID: 25818443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural parameter-based modeling for transport properties of collagen matrices.
    Park S; Whittington C; Voytik-Harbin SL; Han B
    J Biomech Eng; 2015 Jun; 137(6):061003. PubMed ID: 25728145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs.
    Roeder BA; Kokini K; Robinson JP; Voytik-Harbin SL
    J Biomech Eng; 2004 Dec; 126(6):699-708. PubMed ID: 15796328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay of fibronectin functionalization and TGF-β1 presence on fibroblast proliferation, differentiation and migration in 3D matrices.
    Sapudom J; Rubner S; Martin S; Thoenes S; Anderegg U; Pompe T
    Biomater Sci; 2015 Sep; 3(9):1291-301. PubMed ID: 26230292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell encapsulation in a magnetically aligned collagen-GAG copolymer microenvironment.
    Novak T; Voytik-Harbin SL; Neu CP
    Acta Biomater; 2015 Jan; 11():274-82. PubMed ID: 25257315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering.
    Elamparithi A; Punnoose AM; Kuruvilla S
    Artif Cells Nanomed Biotechnol; 2016 Aug; 44(5):1318-25. PubMed ID: 25960178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spatial-temporal characteristics of type I collagen-based extracellular matrix.
    Jones CA; Liang L; Lin D; Jiao Y; Sun B
    Soft Matter; 2014 Nov; 10(44):8855-63. PubMed ID: 25287650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagens from the skin of arabesque greenling (Pleurogrammus azonus) solubilized with the aid of acetic acid and pepsin from albacore tuna (Thunnus alalunga) stomach.
    Nalinanon S; Benjakul S; Kishimura H
    J Sci Food Agric; 2010 Jul; 90(9):1492-500. PubMed ID: 20549802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells.
    Guo W; Wang S; Yu X; Qiu J; Li J; Tang W; Li Z; Mou X; Liu H; Wang Z
    Nanoscale; 2016 Jan; 8(4):1897-904. PubMed ID: 26750302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topologically defined composites of collagen types I and V as in vitro cell culture scaffolds.
    Franke K; Sapudom J; Kalbitzer L; Anderegg U; Pompe T
    Acta Biomater; 2014 Jun; 10(6):2693-702. PubMed ID: 24590159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures.
    Srbova L; Arasalo O; Lehtonen AJ; Pokki J
    Soft Matter; 2024 Apr; 20(16):3483-3498. PubMed ID: 38587658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.
    Kalbitzer L; Pompe T
    Acta Biomater; 2018 Feb; 67():206-214. PubMed ID: 29208553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.