These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 20235322)

  • 1. Mammalian limb loading and chondral modeling during ontogeny.
    Hammond AS; Ning J; Ward CV; Ravosa MJ
    Anat Rec (Hoboken); 2010 Apr; 293(4):658-70. PubMed ID: 20235322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chondral modeling theory revisited.
    Hamrick MW
    J Theor Biol; 1999 Dec; 201(3):201-8. PubMed ID: 10600363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential limb loading in miniature pigs (Sus scrofa domesticus): a test of chondral modeling theory.
    Congdon KA; Hammond AS; Ravosa MJ
    J Exp Biol; 2012 May; 215(Pt 9):1472-83. PubMed ID: 22496283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional adaptation of the femoral head to voluntary exercise.
    Plochocki JH; Riscigno CJ; Garcia M
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jul; 288(7):776-81. PubMed ID: 16761292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone modeling response to voluntary exercise in the hindlimb of mice.
    Plochocki JH; Rivera JP; Zhang C; Ebba SA
    J Morphol; 2008 Mar; 269(3):313-8. PubMed ID: 17957711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli.
    Wang X; Mao JJ
    J Bone Miner Res; 2002 Oct; 17(10):1843-50. PubMed ID: 12369788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of mechanical, morphological, and biochemical properties of the rat growth plate to dose-dependent voluntary exercise.
    Niehoff A; Kersting UG; Zaucke F; Morlock MM; Brüggemann GP
    Bone; 2004 Oct; 35(4):899-908. PubMed ID: 15454097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrocytes isolated from tibial dyschondroplasia lesions and articular cartilage revert to a growth plate-like phenotype when cultured in vitro.
    Wu LN; Ishikawa Y; Genge BR; Wuthier RE
    J Cell Physiol; 2005 Jan; 202(1):167-77. PubMed ID: 15389532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Treatment of deep chondral defects of the knee using autologous chondrocytes cultured on a support--preparation of the cartilage graft].
    Visna P; Pasa L; Adler J; Folvarský J; Horký D
    Acta Chir Orthop Traumatol Cech; 2003; 70(6):350-5. PubMed ID: 15002350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ingrowth of osteochondral grafts under the influence of growth factors: 6-month results of an animal study.
    Siebert CH; Schneider U; Sopka S; Wahner T; Miltner O; Niedhart C
    Arch Orthop Trauma Surg; 2006 May; 126(4):247-52. PubMed ID: 16362426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in growth plate and articular cartilage morphology are associated with reduced SOX9 localization in the magnesium-deficient rat.
    Gruber HE; Ingram J; Norton HJ; Wei LY; Frausto A; Mills BG; Rude RK
    Biotech Histochem; 2004 Feb; 79(1):45-52. PubMed ID: 15223753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of mechanical loading on the mRNA expression of growth-plate cells.
    Villemure I; Chung MA; Seck CS; Kimm MH; Matyas JR; Duncan NA
    Stud Health Technol Inform; 2002; 91():114-8. PubMed ID: 15457706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ultrastructure of cultured cartilage, articular cartilage, growth plate and meniscus].
    Wang J; Yang ZM; Qin TW; Xie HQ
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 May; 17(3):247-50. PubMed ID: 12822363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive modeling in a mammalian skeletal model system.
    Gordon KR; Levy C; Perl M; Weeks OI
    Growth Dev Aging; 1993; 57(2):101-10. PubMed ID: 8495992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model.
    Strauss EJ; Goodrich LR; Chen CT; Hidaka C; Nixon AJ
    Am J Sports Med; 2005 Nov; 33(11):1647-53. PubMed ID: 16093540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation of structural features characterizing weight- and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits.
    Eggli PS; Hunziker EB; Schenk RK
    Anat Rec; 1988 Nov; 222(3):217-27. PubMed ID: 3213972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes.
    Basso N; Heersche JN
    Bone; 2006 Oct; 39(4):807-14. PubMed ID: 16765658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints.
    Muir P; McCarthy J; Radtke CL; Markel MD; Santschi EM; Scollay MC; Kalscheur VL
    Bone; 2006 Mar; 38(3):342-9. PubMed ID: 16275175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondrogenic potential of skeletal cell populations: selective growth of chondrocytes and their morphogenesis and development in vitro.
    Gerstenfeld LC; Toma CD; Schaffer JL; Landis WJ
    Microsc Res Tech; 1998 Oct; 43(2):156-73. PubMed ID: 9823002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.