These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20235330)

  • 1. Proton leak modulation in testicular mitochondria affects reactive oxygen species production and lipid peroxidation.
    Rodrigues AS; Lacerda B; Moreno AJ; Ramalho-Santos J
    Cell Biochem Funct; 2010 Apr; 28(3):224-31. PubMed ID: 20235330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury.
    Serviddio G; Bellanti F; Tamborra R; Rollo T; Capitanio N; Romano AD; Sastre J; Vendemiale G; Altomare E
    Gut; 2008 Jul; 57(7):957-65. PubMed ID: 18308829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UCP2 and ANT differently modulate proton-leak in brain mitochondria of long-term hyperglycemic and recurrent hypoglycemic rats.
    Cardoso S; Santos MS; Moreno A; Moreira PI
    J Bioenerg Biomembr; 2013 Aug; 45(4):397-407. PubMed ID: 23504111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2005 Sep; 289(3):E429-38. PubMed ID: 15886224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of UCP1 protein and measurements of dependent GDP-sensitive proton leak in non-phosphorylating thymus mitochondria.
    Clarke KJ; Carroll AM; O'Brien G; Porter RK
    Methods Mol Biol; 2015; 1241():123-35. PubMed ID: 25308493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-sucrose diet increases ROS generation, FFA accumulation, UCP2 level, and proton leak in liver mitochondria.
    Ruiz-Ramírez A; Chávez-Salgado M; Peñeda-Flores JA; Zapata E; Masso F; El-Hafidi M
    Am J Physiol Endocrinol Metab; 2011 Dec; 301(6):E1198-207. PubMed ID: 21917631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aging, caloric restriction, and uncoupling protein 3 (UCP3) on mitochondrial proton leak in mice.
    Asami DK; McDonald RB; Hagopian K; Horwitz BA; Warman D; Hsiao A; Warden C; Ramsey JJ
    Exp Gerontol; 2008 Dec; 43(12):1069-76. PubMed ID: 18852040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular basis by which dietary restricted feeding reduces mitochondrial reactive oxygen species generation.
    Ash CE; Merry BJ
    Mech Ageing Dev; 2011; 132(1-2):43-54. PubMed ID: 21172374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lopimune-induced mitochondrial toxicity is attenuated by increased uncoupling protein-2 level in treated mouse hepatocytes.
    El Hoss S; Bahr GM; Echtay KS
    Biochem J; 2015 Jun; 468(3):401-7. PubMed ID: 26173235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2004 May; 286(5):E852-61. PubMed ID: 14736705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton leak and hydrogen peroxide production in liver mitochondria from energy-restricted rats.
    Ramsey JJ; Hagopian K; Kenny TM; Koomson EK; Bevilacqua L; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E31-40. PubMed ID: 14662512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver mitochondrial properties from the obesity-resistant Lou/C rat.
    Lacraz G; Couturier K; Taleux N; Servais S; Sibille B; Letexier D; Guigas B; Dubouchaud H; Leverve X; Favier R
    Int J Obes (Lond); 2008 Apr; 32(4):629-38. PubMed ID: 18197185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.
    Jarmuszkiewicz W; Woyda-Ploszczyca A; Koziel A; Majerczak J; Zoladz JA
    Free Radic Biol Med; 2015 Jun; 83():12-20. PubMed ID: 25701433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testicular aging involves mitochondrial dysfunction as well as an increase in UCP2 levels and proton leak.
    Amaral S; Mota P; Rodrigues AS; Martins L; Oliveira PJ; Ramalho-Santos J
    FEBS Lett; 2008 Dec; 582(30):4191-6. PubMed ID: 19041646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial proton leak: a role for uncoupling proteins 2 and 3?
    Porter RK
    Biochim Biophys Acta; 2001 Mar; 1504(1):120-7. PubMed ID: 11239489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling protein 1 dependent reactive oxygen species production by thymus mitochondria.
    Clarke KJ; Porter RK
    Int J Biochem Cell Biol; 2013 Jan; 45(1):81-9. PubMed ID: 23036787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Many faces of mitochondrial uncoupling during age: damage or defense?
    Bellanti F; Romano AD; Giudetti AM; Rollo T; Blonda M; Tamborra R; Vendemiale G; Serviddio G
    J Gerontol A Biol Sci Med Sci; 2013 Aug; 68(8):892-902. PubMed ID: 23292290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation.
    Nègre-Salvayre A; Hirtz C; Carrera G; Cazenave R; Troly M; Salvayre R; Pénicaud L; Casteilla L
    FASEB J; 1997 Aug; 11(10):809-15. PubMed ID: 9271366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of palmitic acid on activity of uncoupling proteins and proton leak in in vitro cerebral mitochondria from the rats exposed to simulated high altitude hypoxia].
    Xu Y; Liu JZ; Xia C
    Sheng Li Xue Bao; 2008 Feb; 60(1):59-64. PubMed ID: 18288359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular kinetic analysis reveals differences in Cd2+ and Cu2+ ion-induced impairment of oxidative phosphorylation in liver.
    Ciapaite J; Nauciene Z; Baniene R; Wagner MJ; Krab K; Mildaziene V
    FEBS J; 2009 Jul; 276(13):3656-68. PubMed ID: 19496816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.