These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20235512)

  • 1. Mapping of local conductivity variations on fragile nanopillar arrays by scanning conductive torsion mode microscopy.
    Weber SA; Haberkorn N; Theato P; Berger R
    Nano Lett; 2010 Apr; 10(4):1194-7. PubMed ID: 20235512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.
    Haberkorn N; Weber SA; Berger R; Theato P
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1573-80. PubMed ID: 20438060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopillar array structures for enhancing biosensing performance.
    Anandan V; Rao YL; Zhang G
    Int J Nanomedicine; 2006; 1(1):73-9. PubMed ID: 17722264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical performance of CdSe nanorod arrays grown on a transparent conducting substrate.
    Schierhorn M; Boettcher SW; Kraemer S; Stucky GD; Moskovits M
    Nano Lett; 2009 Sep; 9(9):3262-7. PubMed ID: 19705806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of large-scale patterned gold-nanopillar arrays on a silicon substrate using imprinted porous alumina templates.
    Wolfrum B; Mourzina Y; Mayer D; Schwaab D; Offenhäusser A
    Small; 2006 Nov; 2(11):1256-60. PubMed ID: 17192970
    [No Abstract]   [Full Text] [Related]  

  • 6. Preferential orientation of a chiral semiconducting carbon nanotube on the locally depassivated Si(100)-2 x 1:H surface identified by scanning tunneling microscopy.
    Albrecht PM; Barraza-Lopez S; Lyding JW
    Small; 2007 Aug; 3(8):1402-6. PubMed ID: 17583550
    [No Abstract]   [Full Text] [Related]  

  • 7. Single- and few-walled carbon nanotubes grown at temperatures as low as 450 degrees c: electrical and field emission characterization.
    Gohier A; Djouadi MA; Dubosc M; Granier A; Minea TM; Sirghi L; Rossi F; Paredez P; Alvarez F
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3350-3. PubMed ID: 18019175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible bistable switching in nanoscale thiol-substituted oligoaniline molecular junctions.
    Cai L; Cabassi MA; Yoon H; Cabarcos OM; McGuiness CL; Flatt AK; Allara DL; Tour JM; Mayer TS
    Nano Lett; 2005 Dec; 5(12):2365-72. PubMed ID: 16351179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron carbonitride nanotubes.
    Zhi CY; Bai XD; Wang EG
    J Nanosci Nanotechnol; 2004; 4(1-2):35-51. PubMed ID: 15112540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and rupture of Schottky nanocontacts on ZnO nanocolumns.
    Pérez-García B; Zúñiga-Pérez J; Muñoz-Sanjosé V; Colchero J; Palacios-Lidón E
    Nano Lett; 2007 Jun; 7(6):1505-11. PubMed ID: 17511510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography.
    Zschech D; Kim DH; Milenin AP; Scholz R; Hillebrand R; Hawker CJ; Russell TP; Steinhart M; Gösele U
    Nano Lett; 2007 Jun; 7(6):1516-20. PubMed ID: 17530809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A template-based electrochemical method for the synthesis of high dense nickel nanotube arrays.
    Pi Z; Tian T; Tian X; Yang C; Zhang S; Zheng J
    J Nanosci Nanotechnol; 2007 Feb; 7(2):673-6. PubMed ID: 17450813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breakdown enhancement in silicon nanowire p-n junctions.
    Agarwal P; Vijayaraghavan MN; Neuilly F; Hijzen E; Hurkx GA
    Nano Lett; 2007 Apr; 7(4):896-9. PubMed ID: 17348715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template.
    Johansson A; Widenkvist E; Lu J; Boman M; Jansson U
    Nano Lett; 2005 Aug; 5(8):1603-6. PubMed ID: 16089496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-standing, erect ultrahigh-aspect-ratio polymer nanopillar and nanotube ensembles.
    Chen G; Soper SA; McCarley RL
    Langmuir; 2007 Nov; 23(23):11777-81. PubMed ID: 17929951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control of cell adhesion on a PMMA polymer surface consisting of nanopillar arrays.
    Ahn J; Son SJ; Min J
    J Biotechnol; 2013 Apr; 164(4):543-8. PubMed ID: 23353729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of conducting self-assembled polyaniline nanotubes/zeolite nanocomposite.
    Cirić-Marjanović G; Dondur V; Milojević M; Mojović M; Mentus S; Radulović A; Vuković Z; Stejskal J
    Langmuir; 2009 Mar; 25(5):3122-31. PubMed ID: 19437716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertically aligned Zn2SiO4 nanotube/ZnO nanowire heterojunction arrays.
    Zhou J; Liu J; Wang X; Song J; Tummala R; Xu NS; Wang ZL
    Small; 2007 Apr; 3(4):622-6. PubMed ID: 17309091
    [No Abstract]   [Full Text] [Related]  

  • 19. A kind of synthetic nanopillar arrays for studying single biomolecule.
    Li Q; Wang K; Xi D; Dang W; Ren Z; He Q; Bai J; Gu C
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7447-50. PubMed ID: 21137956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between the spring force constant and the phonon energy renormalization in electrochemically doped semiconducting single-walled carbon nanotubes.
    Kalbac M; Farhat H; Kavan L; Kong J; Dresselhaus MS
    Nano Lett; 2008 Oct; 8(10):3532-7. PubMed ID: 18798684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.