BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20235526)

  • 1. Covalently linked DNA nanotubes.
    Wilner OI; Henning A; Shlyahovsky B; Willner I
    Nano Lett; 2010 Apr; 10(4):1458-65. PubMed ID: 20235526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small circular DNA molecules act as rigid motifs to build DNA nanotubes.
    Zheng H; Xiao M; Yan Q; Ma Y; Xiao SJ
    J Am Chem Soc; 2014 Jul; 136(29):10194-7. PubMed ID: 25000226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of aptamer-circular DNA nanostructures for controlled biocatalysis.
    Wang ZG; Wilner OI; Willner I
    Nano Lett; 2009 Dec; 9(12):4098-102. PubMed ID: 19719146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character.
    Aldaye FA; Lo PK; Karam P; McLaughlin CK; Cosa G; Sleiman HF
    Nat Nanotechnol; 2009 Jun; 4(6):349-52. PubMed ID: 19498394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable DNA Motifs, 1D and 2D Nanostructures Constructed from Small Circular DNA Molecules.
    Guo X; Wang XM; Xiao SJ
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31033948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters.
    Berengut JF; Berengut JC; Doye JPK; Prešern D; Kawamoto A; Ruan J; Wainwright MJ; Lee LK
    Nucleic Acids Res; 2019 Dec; 47(22):11963-11975. PubMed ID: 31728524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA nanotubes assembled from tensegrity triangle tiles with circular DNA scaffolds.
    Afshan N; Ali M; Wang M; Baig MMFA; Xiao SJ
    Nanoscale; 2017 Nov; 9(44):17181-17185. PubMed ID: 29091094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Two-Dimensional Lattices.
    Guo X; Wang XM; Wei S; Xiao SJ
    Chembiochem; 2018 Jul; 19(13):1379-1385. PubMed ID: 29644789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio.
    Pan H; Feng YP
    ACS Nano; 2008 Nov; 2(11):2410-4. PubMed ID: 19206409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel vapor phase reactions for the synthesis and modification of carbon nanotubes and inorganic nanowires.
    Govindaraj A; Vivekchand SR; Rao CN
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1695-702. PubMed ID: 17654926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoconfined surfactant templated electrodeposition to porous hierarchical nanowires and nanotubes.
    Baber S; Zhou M; Lin QL; Naalla M; Jia QX; Lu Y; Luo HM
    Nanotechnology; 2010 Apr; 21(16):165603. PubMed ID: 20351410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination chemistry approach for the end-to-end assembly of gold nanorods.
    Selvakannan PR; Dumas E; Dumur F; Péchoux C; Beaunier P; Etcheberry A; Sécheresse F; Remita H; Mayer CR
    J Colloid Interface Sci; 2010 Sep; 349(1):93-7. PubMed ID: 20541215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin alternating copolymer nanotubes with readily tunable surface functionalities.
    Chen J; Yu C; Shi Z; Yu S; Lu Z; Jiang W; Zhang M; He W; Zhou Y; Yan D
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3621-5. PubMed ID: 25649301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic nanowire-templated fabrication of alumina nanotubes by atomic layer deposition.
    Wang CC; Kei CC; Yu YW; Perng TP
    Nano Lett; 2007 Jun; 7(6):1566-9. PubMed ID: 17518504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface.
    Ryu JH; Park S; Kim B; Klaikherd A; Russell TP; Thayumanavan S
    J Am Chem Soc; 2009 Jul; 131(29):9870-1. PubMed ID: 19621947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis.
    Jágerszki G; Gyurcsányi RE; Höfler L; Pretsch E
    Nano Lett; 2007 Jun; 7(6):1609-12. PubMed ID: 17488052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.
    Shi D; Song C; Jiang Q; Wang ZG; Ding B
    Chem Commun (Camb); 2013 Mar; 49(25):2533-5. PubMed ID: 23423612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of gold nanotubes from removable MgO nanowires templates.
    Kim HW; Lee JW; Kebede MA; Kim HS; Srinivasa B; Kong MH; Lee C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5715-9. PubMed ID: 19198294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating the physicochemical and structural properties of gold-functionalized protein nanotubes through thiol surface modification.
    Carreño-Fuentes L; Plascencia-Villa G; Palomares LA; Moya SE; Ramírez OT
    Langmuir; 2014 Dec; 30(49):14991-8. PubMed ID: 25409000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.