These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 20235565)
1. Binuclear and trinuclear chromium carbonyls with linear bridging carbonyl groups: isocarbonyl versus carbonyl bonding of carbon monoxide ligands. Zhang Z; Li QS; Xie Y; King RB; Schaefer HF J Phys Chem A; 2010 Apr; 114(13):4672-9. PubMed ID: 20235565 [TBL] [Abstract][Full Text] [Related]
2. Stabilization of binuclear chromium carbonyls by substitution of thiocarbonyl groups for carbonyl groups: nearly linear structures for Cr(2)(CS)(2)(CO)(9). Zhang Z; Li QS; Xie Y; King RB; Schaefer HF J Phys Chem A; 2010 Jan; 114(1):486-97. PubMed ID: 19961211 [TBL] [Abstract][Full Text] [Related]
3. Possibilities for titanium-titanium multiple bonding in binuclear cyclopentadienyltitanium carbonyls: 16-electron metal configurations and four-electron donor bridging carbonyl groups as alternatives. Zhang X; Li QS; Xie Y; King RB; Schaefer HF Inorg Chem; 2010 Feb; 49(4):1961-75. PubMed ID: 20055429 [TBL] [Abstract][Full Text] [Related]
5. Mononuclear and binuclear manganese carbonyl hydrides: the preference for bridging hydrogens over bridging carbonyls. Liu XM; Wang CY; Li QS; Xie Y; King RB; Schaefer HF Dalton Trans; 2009 May; (19):3774-85. PubMed ID: 19417943 [TBL] [Abstract][Full Text] [Related]
6. Iron carbonyl thiocarbonyls: effect of substituting a thiocarbonyl group for a carbonyl group in mononuclear and binuclear iron carbonyl derivatives. Zhang Z; Li QS; Xie Y; King RB; Schaefer HF Inorg Chem; 2009 Mar; 48(5):1974-88. PubMed ID: 19235959 [TBL] [Abstract][Full Text] [Related]
7. From two-electron via four-electron to six-electron donor carbonyl groups in trinuclear derivatives of the oxophilic metal niobium. Peng B; Li QS; Xie Y; King RB; Schaefer HF Dalton Trans; 2009 May; (19):3748-55. PubMed ID: 19417940 [TBL] [Abstract][Full Text] [Related]
8. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides. Liu XM; Wang CY; Li QS; Xie Y; King RB; Schaefer HF Inorg Chem; 2009 May; 48(10):4580-91. PubMed ID: 19371100 [TBL] [Abstract][Full Text] [Related]
9. Extreme metal carbonyl back bonding in cyclopentadienylthorium carbonyls generates bridging C2O2 ligands by carbonyl coupling. Li H; Feng H; Sun W; King RB; Schaefer HF Inorg Chem; 2013 Jun; 52(12):6893-904. PubMed ID: 23721544 [TBL] [Abstract][Full Text] [Related]
10. Trinuclear iron carbonyl thiocarbonyls: the preference for four- and six-electron donor bridging thiocarbonyl groups over metal-metal multiple bonding, while satisfying the 18-electron rule. Zhang Z; Li QS; Xie Y; King RB; Schaefer HF Inorg Chem; 2009 Jul; 48(13):6167-77. PubMed ID: 19472988 [TBL] [Abstract][Full Text] [Related]
12. Binuclear iron carbonyl nitrosyls: bridging nitrosyls versus bridging carbonyls. Wang H; Xie Y; King RB; Schaefer HF Inorg Chem; 2008 Apr; 47(8):3045-55. PubMed ID: 18335979 [TBL] [Abstract][Full Text] [Related]
13. Infrared photodissociation spectroscopic and theoretical study of homoleptic dinuclear chromium carbonyl cluster cations with a linear bridging carbonyl group. Zhou X; Cui J; Li ZH; Wang G; Zhou M J Phys Chem A; 2012 Dec; 116(50):12349-56. PubMed ID: 23210423 [TBL] [Abstract][Full Text] [Related]