BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20235604)

  • 1. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field.
    Sekine Y; Haraguchi M; Tomioka M; Matsukata M; Kikuchi E
    J Phys Chem A; 2010 Mar; 114(11):3824-33. PubMed ID: 20235604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steam plasmatron gasification of distillers grains residue from ethanol production.
    Shie JL; Tsou FJ; Lin KL
    Bioresour Technol; 2010 Jul; 101(14):5571-7. PubMed ID: 20163957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts.
    Pereira EB; de la Piscina PR; Homs N
    Bioresour Technol; 2011 Feb; 102(3):3419-23. PubMed ID: 21044836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas.
    Spivey JJ; Egbebi A
    Chem Soc Rev; 2007 Sep; 36(9):1514-28. PubMed ID: 17660882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil.
    Yuan L; Chen Y; Song C; Ye T; Guo Q; Zhu Q; Torimoto Y; Li Q
    Chem Commun (Camb); 2008 Nov; (41):5215-7. PubMed ID: 18956073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.
    Yoshida H; Yamaoka R; Arai M
    Int J Mol Sci; 2014 Dec; 16(1):350-62. PubMed ID: 25547495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production by sorption-enhanced steam reforming of glycerol.
    Dou B; Dupont V; Rickett G; Blakeman N; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of nanocatalysts for green hydrogen production from bioethanol.
    Bion N; Duprez D; Epron F
    ChemSusChem; 2012 Jan; 5(1):76-84. PubMed ID: 22190382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic partial oxidation of methanol and ethanol for hydrogen generation.
    Hohn KL; Lin YC
    ChemSusChem; 2009; 2(10):927-40. PubMed ID: 19728348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior reactivity of skeletal Ni-based catalysts for low-temperature steam reforming to produce CO-free hydrogen.
    Zhang C; Zhang P; Li S; Wu G; Ma X; Gong J
    Phys Chem Chem Phys; 2012 Mar; 14(10):3295-8. PubMed ID: 22297434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-efficient syngas production through catalytic oxy-methane reforming reactions.
    Choudhary TV; Choudhary VR
    Angew Chem Int Ed Engl; 2008; 47(10):1828-47. PubMed ID: 18188848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen production from bioethanol: Oxidative steam reforming of aqueous ethanol triggered by oxidation of Ni/Ce₀(.)₅Zr₀(.)₅O₂₋(x) at low temperature.
    Sato K; Kawano K; Ito A; Takita Y; Nagaoka K
    ChemSusChem; 2010 Dec; 3(12):1364-6. PubMed ID: 21082728
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel reforming method for hydrogen production from biomass steam gasification.
    Gao N; Li A; Quan C
    Bioresour Technol; 2009 Sep; 100(18):4271-7. PubMed ID: 19395255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable production of syngas from biomass-derived glycerol by steam reforming over highly stable Ni/SiC.
    Kim SM; Woo SI
    ChemSusChem; 2012 Aug; 5(8):1513-22. PubMed ID: 22753307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steam-air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature.
    Kumar A; Eskridge K; Jones DD; Hanna MA
    Bioresour Technol; 2009 Mar; 100(6):2062-8. PubMed ID: 19028089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production.
    Bauer A; Bösch P; Friedl A; Amon T
    J Biotechnol; 2009 Jun; 142(1):50-5. PubMed ID: 19480947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst.
    Chen LC; Cheng H; Chiang CW; Lin SD
    ChemSusChem; 2015 May; 8(10):1787-93. PubMed ID: 25876558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.